Appearance
question:# Question You are given a dataset and tasked with evaluating a machine learning model. Specifically, you need to determine if the model is underfitting, overfitting, or generalizing well. To achieve this, you will generate and analyze validation and learning curves using scikit-learn. Instructions 1. **Load the Dataset**: - Use the `load_iris` function from `sklearn.datasets` to load the dataset. - Shuffle the dataset using `shuffle` from `sklearn.utils`. 2. **Validation Curve**: - Use Support Vector Machine (SVM) with a linear kernel (`SVC(kernel='linear')`) as the estimator. - Generate the validation curve for the hyperparameter `C` over the range `np.logspace(-7, 3, 10)`. - Plot the validation curve using `ValidationCurveDisplay.from_estimator`. 3. **Learning Curve**: - Use the same SVM estimator. - Generate the learning curve with training sizes `[50, 80, 110]` and 5-fold cross-validation. - Plot the learning curve using `LearningCurveDisplay.from_estimator`. 4. **Analysis**: - Based on the generated plots, analyze whether the model is underfitting, overfitting, or generalizing well. - Provide a brief explanation of your analysis. Function Signature ```python def evaluate_model(): import numpy as np from sklearn.model_selection import validation_curve, learning_curve, ValidationCurveDisplay, LearningCurveDisplay from sklearn.datasets import load_iris from sklearn.svm import SVC from sklearn.utils import shuffle import matplotlib.pyplot as plt # Load and shuffle the dataset X, y = load_iris(return_X_y=True) X, y = shuffle(X, y, random_state=0) # Validation Curve param_range = np.logspace(-7, 3, 10) train_scores, valid_scores = validation_curve( SVC(kernel='linear'), X, y, param_name='C', param_range=param_range) # Plot Validation Curve ValidationCurveDisplay.from_estimator( SVC(kernel='linear'), X, y, param_name='C', param_range=param_range) plt.title('Validation Curve') plt.show() # Learning Curve train_sizes = [50, 80, 110] train_sizes, train_scores, valid_scores = learning_curve( SVC(kernel='linear'), X, y, train_sizes=train_sizes, cv=5) # Plot Learning Curve LearningCurveDisplay.from_estimator( SVC(kernel='linear'), X, y, train_sizes=train_sizes, cv=5) plt.title('Learning Curve') plt.show() # Analysis # Based on the plots, provide an analysis on whether the model is underfitting, overfitting, or generalizing well. ``` # Constraints - You may use any additional libraries for visualization, but the primary model evaluation should be performed using scikit-learn. # Notes - Ensure your plots are clear and well-labeled for analysis. - The analysis part should be a commentary based on your interpretation of the plots.
answer:def evaluate_model(): import numpy as np from sklearn.model_selection import validation_curve, learning_curve, ValidationCurveDisplay, LearningCurveDisplay from sklearn.datasets import load_iris from sklearn.svm import SVC from sklearn.utils import shuffle import matplotlib.pyplot as plt # Load and shuffle the dataset X, y = load_iris(return_X_y=True) X, y = shuffle(X, y, random_state=0) # Validation Curve param_range = np.logspace(-7, 3, 10) train_scores, valid_scores = validation_curve( SVC(kernel='linear'), X, y, param_name='C', param_range=param_range, cv=5) # Plot Validation Curve plt.figure(figsize=(10, 6)) ValidationCurveDisplay.from_estimator( SVC(kernel='linear'), X, y, param_name='C', param_range=param_range, cv=5) plt.title('Validation Curve') plt.xlabel('Parameter C') plt.ylabel('Score') plt.legend(['Training score', 'Validation score']) plt.show() # Learning Curve train_sizes = [50, 80, 110] train_sizes, train_scores, valid_scores = learning_curve( SVC(kernel='linear'), X, y, train_sizes=train_sizes, cv=5) # Plot Learning Curve plt.figure(figsize=(10, 6)) LearningCurveDisplay.from_estimator( SVC(kernel='linear'), X, y, train_sizes=train_sizes, cv=5) plt.title('Learning Curve') plt.xlabel('Training examples') plt.ylabel('Score') plt.legend(['Training score', 'Validation score']) plt.show() # Analysis # The validation curve helps us understand if the model is overfitting or underfitting by # comparing training and validation scores across different values of parameter C. # If both curves are low, the model is underfitting. # If the training score is high and the validation score is much lower, the model is overfitting. # If both curves converge to a high value, the model is generalizing well. # The learning curve shows how the validation and training error change with varying training set sizes. # If the training and validation scores converge to a high value as the number of training examples increases, # the model is likely generalizing well. If there is a large gap between curves, the model might be overfitting. # The analysis should provide specifics on the behavior observed in the plots related to underfitting, overfitting, or good generalization.
question:# Pandas Styling and Export Assessment You have been provided with a CSV file containing sales data for various products across different regions. Your task is to read this data into a pandas DataFrame, apply specific styles based on the given conditions, and then export the styled DataFrame to an HTML file. Input - A CSV file named `sales_data.csv` with the following columns: - `Product`: The name of the product. - `Region`: The region where the sales were made. - `Sales`: The number of units sold. - `Revenue`: The total revenue generated from the sales (in USD). Styling Conditions 1. Highlight the rows where `Sales` are above 1000 units with a green background. 2. Highlight the rows where `Revenue` is below 5000 with a red background. 3. For the `Revenue` column, format the values as currency (e.g., `1,234.56`). Output - An HTML file named `styled_sales_data.html` containing the styled DataFrame. Constraints - Use pandas version 1.1.0 or higher. Function Signature ```python import pandas as pd def style_and_export_sales_data(file_path: str, output_path: str) -> None: # Your code here pass ``` Example Suppose the `sales_data.csv` contains the following data: ``` Product,Region,Sales,Revenue Widget A,East,1200,15000 Widget B,West,900,4500 Gadget C,South,100,6500 Gadget D,North,300,2000 ``` After processing, your `styled_sales_data.html` should: 1. Highlight the first row green. 2. Highlight the fourth row red. 3. Format the `Revenue` column as currency. You need to implement the `style_and_export_sales_data` function which will: 1. Read the data from the CSV file. 2. Apply the necessary styles using the `Styler` methods. 3. Export the styled DataFrame to an HTML file. Note: Your implementation should be able to handle any similar CSV files, adhering to the same column structure and constraints.
answer:import pandas as pd def style_and_export_sales_data(file_path: str, output_path: str) -> None: # Read the CSV file into a DataFrame df = pd.read_csv(file_path) # Function to apply styles based on conditions def highlight_sales(cell): return ['background-color: green' if v > 1000 else '' for v in cell] def highlight_revenue(cell): return ['background-color: red' if v < 5000 else '' for v in cell] # Applying styles using Styler styled_df = (df.style .apply(highlight_sales, subset=['Sales']) .apply(highlight_revenue, subset=['Revenue']) .format({'Revenue': '{:,.2f}'})) # Export the styled DataFrame to an HTML file styled_df.to_html(output_path) # Example usage (This would be handled outside this function in practice) # style_and_export_sales_data('sales_data.csv', 'styled_sales_data.html')
question:# Type Hinting and Unit Testing in Python Python's `typing` module allows developers to add type hints to their code, providing greater clarity and facilitating more effective debugging. In addition, the `unittest` module helps in writing and executing unit tests to verify the correctness of individual parts of a program. Task You need to implement a function `process_data(data: List[Dict[str, Union[int, float, str]]]) -> Dict[str, Union[int, float]]` that processes a list of dictionaries. Each dictionary in the list represents certain records and contains keys like `"id"`, `"value"`, and `"status"`. Your function should: 1. Filter out dictionaries where `"status"` is not `"active"`. 2. Sum up the `"value"` fields of the remaining dictionaries. 3. Return a dictionary with: - The key `"count"` representing the number of active records. - The key `"total"` representing the sum of all values for active records. Additionally, write unit tests to verify the correctness of your implementation using the `unittest` module. Example ```python # Input data data = [ {"id": 1, "value": 10.5, "status": "active"}, {"id": 2, "value": 20, "status": "inactive"}, {"id": 3, "value": 15.5, "status": "active"} ] # Expected output { "count": 2, "total": 26.0 } ``` Requirements 1. Implement the function with proper type annotations using the `typing` module. 2. Write at least three unit tests utilizing the `unittest` framework to validate different scenarios for the function `process_data`. Constraints - Each dictionary in the input list will have the keys `"id"`, `"value"`, and `"status"`. - The `"id"` will be a unique integer. - The `"value"` will be a non-negative number (could be int or float). - The `"status"` will be a string and can have any value. Submission Submit your `process_data` function along with the unit tests in a single Python script.
answer:from typing import List, Dict, Union def process_data(data: List[Dict[str, Union[int, float, str]]]) -> Dict[str, Union[int, float]]: Processes a list of dictionaries and filters out those whose status is not 'active'. Args: - data: List[Dict[str, Union[int, float, str]]]: List of dictionaries containing data records. Returns: - Dict[str, Union[int, float]]: A dictionary containing the count of active records and the total of their values. active_records = [record for record in data if record['status'] == 'active'] count = len(active_records) total = sum(record['value'] for record in active_records) return {"count": count, "total": total}
question:# Advanced JSON Encoding and Decoding with Custom Handling **Problem Description:** You are tasked with creating a utility that processes JSON data representing people's profiles. Each profile contains information such as name, age, hobbies, and other nested structured data. To handle this data efficiently, you need to implement custom serialization and deserialization routines. Specifically, you must: 1. Implement a custom JSON encoder that can serialize instances of a `Person` class. 2. Implement a custom JSON decoder that can deserialize JSON strings back into `Person` instances. **Input and Output Formats:** 1. **Custom JSON Encoder:** - Input: An instance of the `Person` class. - Output: A JSON string representation of the `Person` instance. 2. **Custom JSON Decoder:** - Input: A JSON string representation of a person. - Output: An instance of the `Person` class. **Constraints and Requirements:** - The `Person` class has the following attributes: - `name` (str): The name of the person. - `age` (int): The age of the person. - `hobbies` (list of str): A list of hobbies. - `contact_info` (dict): A dictionary with contact information such as email and phone. - You must use the `json` module's `JSONEncoder` and `JSONDecoder` as base classes to implement custom serialization and deserialization. - Ensure that the process is efficient and handles errors gracefully. **Class Definition:** ```python class Person: def __init__(self, name, age, hobbies, contact_info): self.name = name self.age = age self.hobbies = hobbies self.contact_info = contact_info def __eq__(self, other): return (self.name == other.name and self.age == other.age and self.hobbies == other.hobbies and self.contact_info == other.contact_info) ``` **Implementation Skeleton:** Complete the skeleton code provided below: ```python import json class Person: def __init__(self, name, age, hobbies, contact_info): self.name = name self.age = age self.hobbies = hobbies self.contact_info = contact_info def __eq__(self, other): return (self.name == other.name and self.age == other.age and self.hobbies == other.hobbies and self.contact_info == other.contact_info) class PersonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Person): return { 'name': obj.name, 'age': obj.age, 'hobbies': obj.hobbies, 'contact_info': obj.contact_info } return super().default(obj) class PersonDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): super().__init__(object_hook=self.object_hook, *args, **kwargs) def object_hook(self, dct): if 'name' in dct and 'age' in dct and 'hobbies' in dct and 'contact_info' in dct: return Person(name=dct['name'], age=dct['age'], hobbies=dct['hobbies'], contact_info=dct['contact_info']) return dct # Example usage: person = Person(name="Alice", age=30, hobbies=["Reading", "Hiking"], contact_info={"email": "[email protected]", "phone": "123-456-7890"}) json_str = json.dumps(person, cls=PersonEncoder) reconstructed_person = json.loads(json_str, cls=PersonDecoder) print(reconstructed_person == person) # Should print: True ``` # Notes: - Ensure that the custom encoder and decoder handle nested structures and edge cases appropriately. - Test the implementation with different `Person` instances to verify its robustness.
answer:import json class Person: def __init__(self, name, age, hobbies, contact_info): self.name = name self.age = age self.hobbies = hobbies self.contact_info = contact_info def __eq__(self, other): return (self.name == other.name and self.age == other.age and self.hobbies == other.hobbies and self.contact_info == other.contact_info) class PersonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Person): return { 'name': obj.name, 'age': obj.age, 'hobbies': obj.hobbies, 'contact_info': obj.contact_info } return super().default(obj) class PersonDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): super().__init__(object_hook=self.object_hook, *args, **kwargs) def object_hook(self, dct): if 'name' in dct and 'age' in dct and 'hobbies' in dct and 'contact_info' in dct: return Person(name=dct['name'], age=dct['age'], hobbies=dct['hobbies'], contact_info=dct['contact_info']) return dct # Example usage: person = Person(name="Alice", age=30, hobbies=["Reading", "Hiking"], contact_info={"email": "[email protected]", "phone": "123-456-7890"}) json_str = json.dumps(person, cls=PersonEncoder) reconstructed_person = json.loads(json_str, cls=PersonDecoder) print(reconstructed_person == person) # Should print: True