Skip to content
🤔prompts chat🧠
🔍
question:def longest_chain(words: List[str]) -> int: Returns the length of the longest chain of characters from the given list of strings. All characters in the longest chain must appear in non-decreasing order. :param words: List of strings :return: Integer length of the longest chain >>> longest_chain(["a", "b", "c"]) == 3 >>> longest_chain(["edc", "gfb", "a"]) == 7 >>> longest_chain(["aaa", "aaa", "aaa"]) == 9 >>> longest_chain(["abc", "def", "ghi"]) == 9 >>> longest_chain([]) == 0 >>> longest_chain(["zxcvbnm"]) == 7 >>> longest_chain(["abcd", "abcd"]) == 8

answer:def longest_chain(words): Returns the length of the longest chain of characters from the given list of strings. All characters in the longest chain must appear in non-decreasing order. :param words: List of strings :return: Integer length of the longest chain # Concatenate all words into one chain and sort it all_chars = ''.join(words) sorted_chars = sorted(all_chars) # The length of the sorted characters list is the length of the longest chain return len(sorted_chars)

question:from typing import List def minSteps(grid: List[List[int]]) -> int: Returns the minimum number of steps required to reach the bottom-right corner from the top-left corner of the grid. If it is impossible to reach the bottom-right corner, returns -1. >>> minSteps([[1, 1, 0], [0, 1, 0], [0, 1, 1]]) 4 >>> minSteps([[1, 0, 0], [0, 0, 0], [0, 0, 1]]) -1 >>> minSteps([[1, 1], [1, 1]]) 2 >>> minSteps([[1]]) 0 >>> minSteps([[0, 1], [1, 1]]) -1 >>> minSteps([[1, 1], [1, 0]]) -1 >>> minSteps([[1, 1, 1, 1], [0, 0, 1, 0], [1, 1, 1, 1], [1, 0, 0, 1]]) 6

answer:from typing import List from collections import deque def minSteps(grid: List[List[int]]) -> int: Returns the minimum number of steps required to reach the bottom-right corner from the top-left corner of the grid. If it is impossible to reach the bottom-right corner, returns -1. if not grid or not grid[0] or grid[0][0] == 0 or grid[-1][-1] == 0: return -1 n, m = len(grid), len(grid[0]) directions = [(1, 0), (0, 1), (-1, 0), (0, -1)] queue = deque([(0, 0)]) steps = 0 while queue: for _ in range(len(queue)): x, y = queue.popleft() if (x, y) == (n-1, m-1): return steps for dx, dy in directions: nx, ny = x + dx, y + dy if 0 <= nx < n and 0 <= ny < m and grid[nx][ny] == 1: queue.append((nx, ny)) grid[nx][ny] = 0 # Mark as visited steps += 1 return -1

question:def rearrange_to_divisible_by_3(s: str) -> int: Given a string s containing only digits, determine if it can be rearranged into a number that is divisible by 3. Return the largest possible such number or -1 if it's not possible. >>> rearrange_to_divisible_by_3("123") '321' >>> rearrange_to_divisible_by_3("9876543210") '9876543210' >>> rearrange_to_divisible_by_3("124") -1 >>> rearrange_to_divisible_by_3("30") '30' >>> rearrange_to_divisible_by_3("999") '999' >>> rearrange_to_divisible_by_3("3") '3' >>> rearrange_to_divisible_by_3("1") -1

answer:def rearrange_to_divisible_by_3(s): Given a string s containing only digits, determine if it can be rearranged into a number that is divisible by 3. Return the largest possible such number or -1 if it's not possible. # Convert the string into a list of digits digits = [int(char) for char in s] # Sum of the digits digit_sum = sum(digits) # Check if sum of the digits is divisible by 3 if digit_sum % 3 != 0: return -1 # Sort digits in descending order to form the largest number possible digits.sort(reverse=True) # Join sorted digits and form the largest number largest_number = ''.join(map(str, digits)) return largest_number

question:from typing import List class SubmatrixSumFinder: def __init__(self, matrix: List[List[int]]): Initializes the SubmatrixSumFinder object with the matrix. Args: matrix (List[List[int]]): The 2D list of integers representing the matrix. Raises: ValueError: If the matrix is empty. pass def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: Returns the sum of all elements in the submatrix defined by its upper-left corner (row1, col1) and lower-right corner (row2, col2). Args: row1 (int): Row number of the upper-left corner. col1 (int): Column number of the upper-left corner. row2 (int): Row number of the lower-right corner. col2 (int): Column number of the lower-right corner. Returns: int: The sum of all elements in the specified submatrix. pass # Unit tests def test_sumRegion_single_element(): matrix = [ [1, 2], [3, 4] ] finder = SubmatrixSumFinder(matrix) assert finder.sumRegion(0, 0, 0, 0) == 1 assert finder.sumRegion(1, 1, 1, 1) == 4 def test_sumRegion_full_matrix(): matrix = [ [1, 2], [3, 4] ] finder = SubmatrixSumFinder(matrix) assert finder.sumRegion(0, 0, 1, 1) == 10 def test_sumRegion_partial_matrix(): matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] finder = SubmatrixSumFinder(matrix) assert finder.sumRegion(1, 1, 2, 2) == 28 assert finder.sumRegion(0, 0, 1, 1) == 12 def test_sumRegion_edge_cases(): matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] finder = SubmatrixSumFinder(matrix) assert finder.sumRegion(0, 1, 1, 2) == 16 # Sum elements [2, 3, 5, 6] assert finder.sumRegion(1, 0, 2, 1) == 24 # Sum elements [4, 5, 7, 8] def test_empty_matrix(): empty_matrix = [] try: finder = SubmatrixSumFinder(empty_matrix) except ValueError as e: assert str(e) == "Matrix cannot be empty"

answer:from typing import List class SubmatrixSumFinder: def __init__(self, matrix: List[List[int]]): if not matrix or not matrix[0]: raise ValueError("Matrix cannot be empty") self.matrix = matrix self.m = len(matrix) self.n = len(matrix[0]) # Initialize the prefix sum matrix. self.prefix_sum = [[0] * (self.n + 1) for _ in range(self.m + 1)] # Calculate the prefix sum for each cell. for i in range(1, self.m + 1): for j in range(1, self.n + 1): self.prefix_sum[i][j] = (self.matrix[i - 1][j - 1] + self.prefix_sum[i - 1][j] + self.prefix_sum[i][j - 1] - self.prefix_sum[i - 1][j - 1]) def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: return (self.prefix_sum[row2 + 1][col2 + 1] - self.prefix_sum[row1][col2 + 1] - self.prefix_sum[row2 + 1][col1] + self.prefix_sum[row1][col1])

Released under the chat License.

has loaded