Appearance
question:def submatrix_sum(matrix, upper_left, lower_right): Returns the sum of all elements in the specified submatrix. Parameters: - matrix: list of lists of integers representing the n x m matrix. - upper_left: tuple of integers representing the upper-left corner of submatrix (row, column). - lower_right: tuple of integers representing the lower-right corner of submatrix (row, column). Returns: - Sum of all elements in the specified submatrix. pass # Unit Tests def test_submatrix_sum_example1(): matrix = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ] upper_left = (1, 1) lower_right = (2, 2) assert submatrix_sum(matrix, upper_left, lower_right) == 34 def test_submatrix_sum_example2(): matrix = [ [5, 3, 8], [1, 6, 7], [4, 2, 9] ] upper_left = (0, 0) lower_right = (2, 1) assert submatrix_sum(matrix, upper_left, lower_right) == 21 def test_submatrix_sum_single_element(): matrix = [ [5, 3, 8], [1, 6, 7], [4, 2, 9] ] upper_left = (1, 1) lower_right = (1, 1) assert submatrix_sum(matrix, upper_left, lower_right) == 6 def test_submatrix_sum_entire_matrix(): matrix = [ [1, 2], [3, 4] ] upper_left = (0, 0) lower_right = (1, 1) assert submatrix_sum(matrix, upper_left, lower_right) == 10 def test_submatrix_sum_top_left_corner(): matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] upper_left = (0, 0) lower_right = (1, 1) assert submatrix_sum(matrix, upper_left, lower_right) == 12 def test_submatrix_sum_bottom_right_corner(): matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] upper_left = (1, 1) lower_right = (2, 2) assert submatrix_sum(matrix, upper_left, lower_right) == 28
answer:def submatrix_sum(matrix, upper_left, lower_right): Returns the sum of all elements in the specified submatrix. Parameters: - matrix: list of lists of integers representing the n x m matrix. - upper_left: tuple of integers representing the upper-left corner of submatrix (row, column). - lower_right: tuple of integers representing the lower-right corner of submatrix (row, column). Returns: - Sum of all elements in the specified submatrix. sum_elements = 0 start_row, start_col = upper_left end_row, end_col = lower_right for i in range(start_row, end_row + 1): for j in range(start_col, end_col + 1): sum_elements += matrix[i][j] return sum_elements
question:def can_schedule_games(N, M, restricted_pairs): Determines whether it is possible to create a valid schedule given the limitations. Parameters: N (int): The number of players. M (int): The number of restricted pairs. restricted_pairs (list of tuples): List of pairs which indicate restricted matches. Returns: str: "YES" if a valid schedule can be created, otherwise "NO". def test_can_schedule_games_example1(): N = 4 M = 2 restricted_pairs = [(1, 2), (3, 4)] assert can_schedule_games(N, M, restricted_pairs) == "YES" def test_can_schedule_games_example2(): N = 4 M = 3 restricted_pairs = [(1, 2), (2, 3), (3, 1)] assert can_schedule_games(N, M, restricted_pairs) == "NO" def test_no_restrictions(): N = 5 M = 0 restricted_pairs = [] assert can_schedule_games(N, M, restricted_pairs) == "YES" def test_all_pairs_restricted(): N = 3 M = 3 restricted_pairs = [(1, 2), (2, 3), (3, 1)] assert can_schedule_games(N, M, restricted_pairs) == "NO" def test_large_input(): N = 1000 M = 1 restricted_pairs = [(1, 2)] assert can_schedule_games(N, M, restricted_pairs) == "YES" def test_unconnected_graph(): N = 6 M = 4 restricted_pairs = [(1, 2), (3, 4), (5, 6), (2, 3)] assert can_schedule_games(N, M, restricted_pairs) == "YES"
answer:def can_schedule_games(N, M, restricted_pairs): Determines whether it is possible to create a valid schedule given the limitations. Parameters: N (int): The number of players. M (int): The number of restricted pairs. restricted_pairs (list of tuples): List of pairs which indicate restricted matches. Returns: str: "YES" if a valid schedule can be created, otherwise "NO". from collections import defaultdict, deque # Create a graph adjacency list graph = defaultdict(list) for u, v in restricted_pairs: graph[u].append(v) graph[v].append(u) # Use coloring to determine if the graph is bipartite. color = {} def bfs(start): queue = deque([start]) color[start] = 0 while queue: node = queue.popleft() current_color = color[node] for neighbor in graph[node]: if neighbor not in color: color[neighbor] = 1 - current_color queue.append(neighbor) elif color[neighbor] == current_color: return False return True # Check for each component in the graph for player in range(1, N + 1): if player not in color: if not bfs(player): return "NO" return "YES"
question:def minimum_remaining_element(arr): Returns the minimum possible value of the remaining element after performing n-1 operations. >>> minimum_remaining_element([1, 2, 3, 4]) 10 >>> minimum_remaining_element([5, 8, 6]) 19 >>> minimum_remaining_element([100, 200]) 300
answer:def minimum_remaining_element(arr): Returns the minimum possible value of the remaining element after performing n-1 operations. return sum(arr)
question:from typing import List def process_commands(commands: List[str]) -> List[str]: Processes a list of commands on a grid and returns the state of light bulbs for each query command. Parameters: commands (List[str]): List of command strings in the format 'L x y', 'T x y', 'Q x y' Returns: List[str]: List of results for each query in the order they appeared, each one being "ON" or "OFF" Examples: >>> process_commands(["L 1 2", "Q 1 2", "T 1 2", "Q 1 2", "L 3 4", "Q 3 4"]) ["ON", "OFF", "ON"] >>> process_commands(["L 0 0", "T 0 0", "Q 0 0", "T 0 0", "Q 0 0"]) ["OFF", "ON"] pass def test_basic_commands(): commands = [ "L 1 2", "Q 1 2", "T 1 2", "Q 1 2", "L 3 4", "Q 3 4" ] assert process_commands(commands) == ["ON", "OFF", "ON"] def test_toggle_same_position(): commands = [ "L 0 0", "T 0 0", "Q 0 0", "T 0 0", "Q 0 0" ] assert process_commands(commands) == ["OFF", "ON"] def test_query_without_light(): commands = [ "Q 5 5", "L 5 5", "Q 5 5", "T 5 5", "Q 5 5" ] assert process_commands(commands) == ["OFF", "ON", "OFF"] def test_multiple_toggles(): commands = [ "L 1 1", "T 1 1", "T 1 1", "Q 1 1", "T 1 1", "Q 1 1" ] assert process_commands(commands) == ["ON", "OFF"]
answer:def process_commands(commands): Processes a list of commands on a grid and returns the state of light bulbs for each query command. Parameters: commands (List[str]): List of command strings in the format 'L x y', 'T x y', 'Q x y' Returns: List[str]: List of results for each query in the order they appeared, each one being "ON" or "OFF" grid = {} results = [] for command in commands: parts = command.split() cmd = parts[0] x, y = int(parts[1]), int(parts[2]) key = (x, y) if cmd == 'L': grid[key] = True elif cmd == 'T': if key in grid and grid[key] == True: grid[key] = False else: grid[key] = True elif cmd == 'Q': if key in grid and grid[key] == True: results.append("ON") else: results.append("OFF") return results