Appearance
question:**Time Series Analysis with Panda's Resampler** **Problem Statement:** You are tasked with analyzing a dataset containing time series data. Using pandas, you need to resample this data, perform transformations, and compute various statistical metrics. **Input:** You are given a CSV file named `time_series_data.csv` which contains columns: - `timestamp`: A date-time string in the format `YYYY-MM-DD HH:MM:SS` - `value`: A floating-point number representing the data value at the given timestamp **Tasks:** 1. **Read the Dataset:** - Load the data from `time_series_data.csv` into a pandas DataFrame. - Ensure the `timestamp` column is parsed as a date-time column and set it as the index of the DataFrame. 2. **Resample the Data:** - Resample the data to a daily frequency, and fill missing values using forward fill. 3. **Transformations:** - Compute the rolling mean with a window of 7 days on the resampled data. - Add this rolling mean as a new column to the DataFrame called `rolling_mean`. 4. **Statistical Computations:** - Compute the following statistical metrics on the resampled data: - Daily sum - Daily mean - Maximum value within each week - Minimum value within each week - Standard deviation within each day 5. **Output:** - Print the first 10 rows of the DataFrame after adding the rolling mean. - Print the computed statistical metrics. **Constraints:** - You must use pandas for all operations. - Handle missing values appropriately when resampling. **Performance Requirements:** - The operations should efficiently handle datasets with up to 10^6 rows. **Example:** Given the partial content of `time_series_data.csv`: ``` timestamp,value 2023-01-01 00:00:00,10.5 2023-01-02 00:00:00,15.2 2023-01-03 00:00:00,13.5 ... ``` You should implement the function `process_time_series_data(file_path: str) -> None`, where `file_path` is the path to the CSV file. ```python import pandas as pd def process_time_series_data(file_path: str) -> None: # Task 1: Read the dataset df = pd.read_csv(file_path, parse_dates=['timestamp'], index_col='timestamp') # Task 2: Resample the data to daily frequency df_resampled = df.resample('D').ffill() # Task 3: Compute rolling mean with a 7-day window df_resampled['rolling_mean'] = df_resampled['value'].rolling(window=7).mean() # Task 4: Compute statistical metrics daily_sum = df_resampled['value'].resample('D').sum() daily_mean = df_resampled['value'].resample('D').mean() weekly_max = df_resampled['value'].resample('W').max() weekly_min = df_resampled['value'].resample('W').min() daily_std = df_resampled['value'].resample('D').std() # Output the first 10 rows after adding rolling mean print(df_resampled.head(10)) # Print the computed statistical metrics print('Daily Sum:n', daily_sum.head(10)) print('Daily Mean:n', daily_mean.head(10)) print('Weekly Max:n', weekly_max.head(10)) print('Weekly Min:n', weekly_min.head(10)) print('Daily Std Dev:n', daily_std.head(10)) ``` Test the function with the provided CSV file to ensure correctness.
answer:import pandas as pd def process_time_series_data(file_path: str) -> None: # Task 1: Read the dataset df = pd.read_csv(file_path, parse_dates=['timestamp'], index_col='timestamp') # Task 2: Resample the data to daily frequency df_resampled = df.resample('D').ffill() # Task 3: Compute rolling mean with a 7-day window df_resampled['rolling_mean'] = df_resampled['value'].rolling(window=7).mean() # Task 4: Compute statistical metrics daily_sum = df_resampled['value'].resample('D').sum() daily_mean = df_resampled['value'].resample('D').mean() weekly_max = df_resampled['value'].resample('W').max() weekly_min = df_resampled['value'].resample('W').min() daily_std = df_resampled['value'].resample('D').std() # Output the first 10 rows after adding rolling mean print(df_resampled.head(10)) # Print the computed statistical metrics print('Daily Sum:n', daily_sum.head(10)) print('Daily Mean:n', daily_mean.head(10)) print('Weekly Max:n', weekly_max.head(10)) print('Weekly Min:n', weekly_min.head(10)) print('Daily Std Dev:n', daily_std.head(10))
question:**Objective:** Test your understanding of seaborn by customizing color palettes and creating a complex visualization. **Task:** You are given a dataset containing information about different species of the Iris flower (`iris`). Your task is to: 1. Create a dark palette starting from black to a specified main color (`#4CAF50`, which is a shade of green) and use this palette for the plot. 2. Increase the number of colors in the palette to 10. 3. Create a scatter plot using the seaborn `relplot` function with the following specifications: - x-axis: `sepal_length` - y-axis: `sepal_width` - Hue: Different species of the Iris flower - Add a linear regression line to each species' data points. - Use the customized dark palette for the plot. **Dataset:** You can load the iris dataset directly using seaborn: ```python iris = sns.load_dataset('iris') ``` **Constraints:** 1. Ensure that the plot is clear and properly labeled. 2. Apply the specified customized palette to the plot. 3. Add regression lines for better clarity. **Input and Output Formats:** *Input:* There are no direct inputs; you will load the dataset using seaborn. *Output:* A single plot with the specifications mentioned above. **Implementation Requirements:** - Use seaborn's built-in functions to load the dataset and create the plot. - Ensure that the plot is displayed properly without errors. Here's an example of how your code should look: ```python # Import necessary libraries import seaborn as sns import matplotlib.pyplot as plt # Load the iris dataset iris = sns.load_dataset('iris') # Create a dark palette palette = sns.dark_palette("#4CAF50", n_colors=10, as_cmap=False) # Create a scatter plot with a regression line sns.set_theme() plot = sns.relplot(data=iris, x='sepal_length', y='sepal_width', hue='species', palette=palette, kind='scatter') plot.map(plt.plot, 'sepal_length', 'sepal_width', color='sepal_color', markers=True) plt.show() ``` Make sure to customize the palette and plot as per the requirements.
answer:import seaborn as sns import matplotlib.pyplot as plt # Load the iris dataset iris = sns.load_dataset('iris') # Create a dark palette palette = sns.dark_palette("#4CAF50", n_colors=10, as_cmap=False) # Create a scatter plot with a regression line sns.set_theme() plot = sns.lmplot(data=iris, x='sepal_length', y='sepal_width', hue='species', palette=palette, height=6, aspect=1.5, scatter_kws={'s': 50, 'alpha': 0.7}, ci=None) plt.xlabel("Sepal Length") plt.ylabel("Sepal Width") plt.title("Scatter plot of Sepal Length vs. Sepal Width with Regression Line for Iris Species") # Show the plot plt.show()
question:Objective Implement a class in Python that effectively demonstrates knowledge of buffer manipulation, direct memory access, and data integrity. Problem Statement You are to implement a `CustomBuffer` class that simulates a simple multi-dimensional array with direct access to the underlying memory buffer. The `CustomBuffer` should support the following operations: 1. **Initialization**: The class should be initialized with a shape and an optional format string. 2. **Set Item**: Ability to set an item at a specific index. 3. **Get Item**: Ability to get an item at a specific index. 4. **Check Contiguity**: Function to check if the buffer is contiguous in 'C', 'F', or 'A' style. 5. **View Info**: Print detailed information about the buffer, including the shape, strides, and memory addresses. Specifications - **Initialization**: ```python def __init__(self, shape, format='B') ``` - `shape`: a tuple indicating the shape of the multi-dimensional array. - `format`: an optional string indicating the format of the buffer elements. Default is 'B' for unsigned bytes. - **Set Item**: ```python def set_item(self, indices, value) ``` - `indices`: a tuple of indices where the item should be set. - `value`: the value to set at the specified indices. - **Get Item**: ```python def get_item(self, indices) ``` - `indices`: a tuple of indices to retrieve the item from. - **Check Contiguity**: ```python def is_contiguous(self, style) ``` - `style`: can be 'C', 'F', or 'A' for C-style, Fortran-style, or either. - Should return a boolean indicating whether the buffer is contiguous in the specified style. - **View Info**: ```python def view_info(self) ``` - Prints detailed information about the buffer, including shape, strides, and memory addresses of elements. Example ```python # Create a 2x3 buffer of unsigned bytes buf = CustomBuffer((2, 3)) # Set values buf.set_item((0, 0), 1) buf.set_item((0, 1), 2) buf.set_item((0, 2), 3) buf.set_item((1, 0), 4) buf.set_item((1, 1), 5) buf.set_item((1, 2), 6) # Get values assert buf.get_item((0, 0)) == 1 assert buf.get_item((1, 2)) == 6 # Check contiguity assert buf.is_contiguous('C') == True assert buf.is_contiguous('F') == False # View buffer info buf.view_info() ``` Constraints - The elements in the buffer should fit into the memory allowed by the specified shape. - Memory operations should ensure integrity and contiguity as required. - You must handle possible errors gracefully, such as accessing out-of-bounds indices. **Note**: For simplification, actual low-level memory manipulations should be simulated using Python's capabilities (e.g., using lists to represent the buffer) rather than using C-level APIs directly.
answer:import numpy as np class CustomBuffer: def __init__(self, shape, format='B'): self.shape = shape self.format = format self.buffer = np.zeros(shape, self._numpy_dtype()) def _numpy_dtype(self): # Convert format string to numpy dtype format_map = { 'B': np.uint8, 'H': np.uint16, 'I': np.uint32, 'L': np.uint64, 'b': np.int8, 'h': np.int16, 'i': np.int32, 'l': np.int64, 'f': np.float32, 'd': np.float64, } return format_map[self.format] def set_item(self, indices, value): try: self.buffer[indices] = value except IndexError: raise IndexError("Indices out of bounds") def get_item(self, indices): try: return self.buffer[indices] except IndexError: raise IndexError("Indices out of bounds") def is_contiguous(self, style): if style == 'C': return self.buffer.flags['C_CONTIGUOUS'] elif style == 'F': return self.buffer.flags['F_CONTIGUOUS'] elif style == 'A': return self.buffer.flags['C_CONTIGUOUS'] or self.buffer.flags['F_CONTIGUOUS'] else: raise ValueError("Invalid contiguity style, must be 'C', 'F', or 'A'") def view_info(self): print(f"Shape: {self.buffer.shape}") print(f"Strides: {self.buffer.strides}") print(f"Memory address of buffer start: {self.buffer.__array_interface__['data'][0]}")
question:In this task, you will leverage the `webbrowser` module to implement a function that systematically opens a list of URLs in different browser types, handling errors gracefully and ensuring each URL is loaded successfully in at least one browser. Function Signature ```python def batch_open_urls(urls: List[str], browsers: List[str]) -> Dict[str, Dict[str, bool]]: Opens a list of URLs in a list of browser types. Parameters: urls (List[str]): A list of URLs to be opened. browsers (List[str]): A list of browser type names to use for opening URLs. Returns: dict: A dictionary where the keys are URLs and the values are dictionaries, which map browser types to a boolean indicating if the URL was successfully opened. ``` Input 1. `urls`: A list of strings where each string is a URL. 2. `browsers`: A list of strings representing browser types (as mentioned in the webbrowser module documentation). Output - A dictionary where each key is a URL and each value is another dictionary. This inner dictionary has browser types as keys and booleans as values indicating whether the URL was successfully opened in that browser. Example ```python urls = ["https://www.python.org", "https://www.invalid-url.org"] browsers = ["firefox", "safari", "chrome"] result = batch_open_urls(urls, browsers) print(result) ``` Expected output (example format, actual output may depend on your environment): ```python { "https://www.python.org": { "firefox": True, "safari": True, "chrome": True }, "https://www.invalid-url.org": { "firefox": False, "safari": False, "chrome": False } } ``` Constraints - You should handle the scenario where an invalid browser type is provided (treat it as if the browser failed to open the URL). - If all provided browsers fail to open a URL, ensure the failure is reflected appropriately in the output. - Ensure compatibility with both Windows and non-Windows platforms. Performance Requirements - The function should attempt to open each URL in each browser serially (one after another). Parallel browser launches are not necessary. Additional Notes - The `webbrowser.Error` should be caught to handle cases where a browser fails to open a URL. - Use appropriate messages or logging to trace and report browser failures (this is optional for your implementation but recommended for debugging). Implement the function as described using the "webbrowser" module.
answer:import webbrowser from typing import List, Dict def batch_open_urls(urls: List[str], browsers: List[str]) -> Dict[str, Dict[str, bool]]: Opens a list of URLs in a list of browser types. Parameters: urls (List[str]): A list of URLs to be opened. browsers (List[str]): A list of browser type names to use for opening URLs. Returns: dict: A dictionary where the keys are URLs and the values are dictionaries, which map browser types to a boolean indicating if the URL was successfully opened. result = {} for url in urls: result[url] = {} for browser_name in browsers: try: browser = webbrowser.get(browser_name) success = browser.open(url) result[url][browser_name] = success except webbrowser.Error: result[url][browser_name] = False return result