Skip to content
🤔prompts chat🧠
🔍
question:**Coding Assessment Question** **Objective:** To demonstrate your understanding of pandas MultiIndex, you are required to perform a series of data manipulation tasks using a hierarchical index. **Scenario:** You are provided with a dataset that tracks the monthly sales performance of different products across various regions. The dataset is represented in a pandas DataFrame with a hierarchical index. **Tasks:** 1. **Data Initialization:** - Create a DataFrame with the following multi-level index and columns: - Index Levels: - 'Region': 'North', 'South', 'East', 'West' - 'Month': 'January', 'February', 'March' - Columns: 'Product_A', 'Product_B', 'Product_C' The DataFrame should be initialized with the provided sales data: ``` Region Month Product_A Product_B Product_C North January 200 150 210 February 180 160 200 March 160 170 180 South January 220 140 230 February 210 150 220 March 190 140 210 East January 150 120 160 February 140 110 150 March 130 100 140 West January 210 180 220 February 200 190 210 March 190 180 200 ``` 2. **Data Analysis and Manipulation:** a. Calculate the total sales for each product across all regions for each month. b. Determine the region with the highest sales for 'Product_A' in February. c. Reconstruct the DataFrame while keeping only the levels that have non-zero sales. d. Using `DataFrame.xs`, extract the sales data for 'February' across all regions. e. Implement a function to add a new column 'Total_Sales' that sums up the sales of 'Product_A', 'Product_B', and 'Product_C' for each index level. **Function Implementation:** ```python import pandas as pd import numpy as np # Function to initialize the dataset def initialize_sales_data(): arrays = [ ['North', 'North', 'North', 'South', 'South', 'South', 'East', 'East', 'East', 'West', 'West', 'West'], ['January', 'February', 'March', 'January', 'February', 'March', 'January', 'February', 'March', 'January', 'February', 'March'] ] index = pd.MultiIndex.from_arrays(arrays, names=('Region', 'Month')) data = { 'Product_A': [200, 180, 160, 220, 210, 190, 150, 140, 130, 210, 200, 190], 'Product_B': [150, 160, 170, 140, 150, 140, 120, 110, 100, 180, 190, 180], 'Product_C': [210, 200, 180, 230, 220, 210, 160, 150, 140, 220, 210, 200], } df = pd.DataFrame(data, index=index) return df # Function to calculate total sales for each product across all regions for each month def total_sales_per_product(df): return df.groupby(level='Month').sum() # Function to determine the region with the highest sales for 'Product_A' in February def highest_sales_region_february(df): return df.loc[(slice(None), 'February'), 'Product_A'].idxmax()[0] # Function to reconstruct the DataFrame while keeping only used levels def reconstruct_df(df): return df.loc[(df != 0).any(axis=1)].copy() # Function to extract sales data for 'February' across all regions using `DataFrame.xs` def extract_february_data(df): return df.xs('February', level='Month') # Function to add a new column 'Total_Sales' def add_total_sales_column(df): df['Total_Sales'] = df.sum(axis=1) return df # Main function to execute the tasks def main(): df = initialize_sales_data() print("Original DataFrame:") print(df) total_sales = total_sales_per_product(df) print("nTotal sales per product for each month:") print(total_sales) highest_sales_region = highest_sales_region_february(df) print(f"nRegion with the highest sales for 'Product_A' in February: {highest_sales_region}") reconstructed_df = reconstruct_df(df) print("nReconstructed DataFrame:") print(reconstructed_df) february_data = extract_february_data(df) print("nSales data for February across all regions:") print(february_data) df_with_total_sales = add_total_sales_column(df) print("nDataFrame with 'Total_Sales' column added:") print(df_with_total_sales) if __name__ == "__main__": main() ``` **Constraints:** - You are allowed to use only the pandas library for data manipulation. - Ensure your implementation is efficient and leverages pandas' capabilities for hierarchical indexing. **Expected Output:** - A DataFrame showing the total sales for each product across all regions for each month. - The region with the highest sales for 'Product_A' in February. - A reconstructed DataFrame with only used levels retained. - A DataFrame that shows the sales data for February across all regions. - The original DataFrame with an added 'Total_Sales' column.

answer:import pandas as pd # Function to initialize the dataset def initialize_sales_data(): arrays = [ ['North', 'North', 'North', 'South', 'South', 'South', 'East', 'East', 'East', 'West', 'West', 'West'], ['January', 'February', 'March', 'January', 'February', 'March', 'January', 'February', 'March', 'January', 'February', 'March'] ] index = pd.MultiIndex.from_arrays(arrays, names=('Region', 'Month')) data = { 'Product_A': [200, 180, 160, 220, 210, 190, 150, 140, 130, 210, 200, 190], 'Product_B': [150, 160, 170, 140, 150, 140, 120, 110, 100, 180, 190, 180], 'Product_C': [210, 200, 180, 230, 220, 210, 160, 150, 140, 220, 210, 200], } df = pd.DataFrame(data, index=index) return df # Function to calculate total sales for each product across all regions for each month def total_sales_per_product(df): return df.groupby(level='Month').sum() # Function to determine the region with the highest sales for 'Product_A' in February def highest_sales_region_february(df): return df.loc[(slice(None), 'February'), 'Product_A'].idxmax()[0] # Function to reconstruct the DataFrame while keeping only levels that have non-zero sales def reconstruct_df(df): return df.loc[(df != 0).any(axis=1)].copy() # Function to extract sales data for 'February' across all regions using `DataFrame.xs` def extract_february_data(df): return df.xs('February', level='Month') # Function to add a new column 'Total_Sales' def add_total_sales_column(df): df['Total_Sales'] = df.sum(axis=1) return df

question:# **Partial Least Squares Canonical (PLSCanonical) Implementation** You are requested to implement the `PLSCanonical` algorithm from scratch, leveraging your understanding of the iterative process detailed in the provided documentation. The goal is to demonstrate the dimensionality reduction and the associated projection of X and Y matrices to maximize the covariance. **Function Signature:** ```python def plscanonical(X: np.ndarray, Y: np.ndarray, n_components: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: pass ``` **Input:** - `X` (numpy.ndarray): Input predictor matrix X of shape `(n_samples, n_features)`, standardized (mean = 0 and variance = 1 for each feature). - `Y` (numpy.ndarray): Input response matrix Y of shape `(n_samples, n_targets)`, standardized (mean = 0 and variance = 1 for each target). - `n_components` (int): Number of PLS components to extract. **Output:** The function should return a tuple containing: - `x_weights` (numpy.ndarray): The weights for the X matrix of shape `(n_features, n_components)`. - `y_weights` (numpy.ndarray): The weights for the Y matrix of shape `(n_targets, n_components)`. - `x_scores` (numpy.ndarray): The scores for the X matrix of shape `(n_samples, n_components)`. - `y_scores` (numpy.ndarray): The scores for the Y matrix of shape `(n_samples, n_components)`. - `x_loadings` (numpy.ndarray): The loadings for the X matrix of shape `(n_features, n_components)`. - `y_loadings` (numpy.ndarray): The loadings for the Y matrix of shape `(n_targets, n_components)`. **Implementation Steps:** 1. Initialize `X_k` to `X` and `Y_k` to `Y`. 2. For each of the n_components: - Compute cross-covariance matrix `C = X_k.T @ Y_k`. - Perform SVD on C to find the first left and right singular vectors (weights `u_k` and `v_k`). - Project `X_k` and `Y_k` on weights to get scores `xi_k` and `omega_k`. - Compute loadings `gamma_k` and `delta_k` for the scores in X and Y. - Deflate `X_k` and `Y_k`. 3. Return the set of weights, scores, and loadings obtained by the iterative process. **Example:** ```python import numpy as np # Sample data X = np.array([[0.5, 0.6, 0.7], [0.1, 0.2, 0.3], [0.7, 0.8, 0.9]]) Y = np.array([[1.0, 1.1], [0.0, 0.1], [0.9, 1.0]]) n_components = 2 # Call the function x_weights, y_weights, x_scores, y_scores, x_loadings, y_loadings = plscanonical(X, Y, n_components) # Display results print("X Weights:n", x_weights) print("Y Weights:n", y_weights) print("X Scores:n", x_scores) print("Y Scores:n", y_scores) print("X Loadings:n", x_loadings) print("Y Loadings:n", y_loadings) ``` Implement and submit your solution for evaluating the fundamental and advanced comprehension of the PLSCanonical algorithm.

answer:import numpy as np from typing import Tuple def plscanonical(X: np.ndarray, Y: np.ndarray, n_components: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: n_samples, n_features = X.shape n_targets = Y.shape[1] x_weights = np.zeros((n_features, n_components)) y_weights = np.zeros((n_targets, n_components)) x_scores = np.zeros((n_samples, n_components)) y_scores = np.zeros((n_samples, n_components)) x_loadings = np.zeros((n_features, n_components)) y_loadings = np.zeros((n_targets, n_components)) X_k = X Y_k = Y for k in range(n_components): C = np.dot(X_k.T, Y_k) U, S, VT = np.linalg.svd(C, full_matrices=False) u_k = U[:, 0] v_k = VT.T[:, 0] x_weights[:, k] = u_k y_weights[:, k] = v_k xi_k = np.dot(X_k, u_k) omega_k = np.dot(Y_k, v_k) x_scores[:, k] = xi_k y_scores[:, k] = omega_k gamma_k = np.dot(X_k.T, xi_k) / np.dot(xi_k.T, xi_k) delta_k = np.dot(Y_k.T, omega_k) / np.dot(omega_k.T, omega_k) x_loadings[:, k] = gamma_k y_loadings[:, k] = delta_k X_k -= np.outer(xi_k, gamma_k) Y_k -= np.outer(omega_k, delta_k) return x_weights, y_weights, x_scores, y_scores, x_loadings, y_loadings

question:# **Unicode String Manipulation in Python** **Objective:** You are tasked with implementing a set of functions that leverage low-level Unicode manipulation capabilities in Python. Your solution will demonstrate proficiency in working with Unicode objects, encoding/decoding, and performing various Unicode-related operations. # **Function Specifications** 1. **Function: `unicode_to_utf8`** - **Input**: A Unicode string. - **Output**: A UTF-8 encoded byte string. - **Description**: Convert the given Unicode string to its UTF-8 encoded form. ```python def unicode_to_utf8(unicode_str: str) -> bytes: Convert a given Unicode string to its UTF-8 encoded byte string. :param unicode_str: The input Unicode string. :return: The UTF-8 encoded byte string. pass ``` 2. **Function: `utf8_to_unicode`** - **Input**: A UTF-8 encoded byte string. - **Output**: A Unicode string. - **Description**: Convert the given UTF-8 encoded byte string back to its Unicode string form. ```python def utf8_to_unicode(utf8_bytes: bytes) -> str: Convert a given UTF-8 encoded byte string back to a Unicode string. :param utf8_bytes: The input UTF-8 encoded byte string. :return: The resulting Unicode string. pass ``` 3. **Function: `is_unicode_digit`** - **Input**: A single Unicode character. - **Output**: A boolean. - **Description**: Check if the given Unicode character represents a digit. ```python def is_unicode_digit(unicode_char: str) -> bool: Check if the given Unicode character is a digit. :param unicode_char: The Unicode character to check. :return: `True` if the character represents a digit, `False` otherwise. pass ``` 4. **Function: `unicode_properties`** - **Input**: A Unicode string. - **Output**: A dictionary where the keys are characters, and the values are dictionaries containing properties (`is_digit`, `is_alpha`, `is_printable`). - **Description**: For each character in the Unicode string, determine whether it is a digit, alphabetic, and printable. ```python def unicode_properties(unicode_str: str) -> dict: Retrieve properties of each character in the Unicode string. :param unicode_str: The input Unicode string. :return: A dictionary with characters as keys and dictionaries of properties as values. pass ``` # **Constraints** - For `unicode_to_utf8` and `utf8_to_unicode`, use the correct encoding and decoding mechanisms. - For `is_unicode_digit` and `unicode_properties`, make use of the provided Unicode-related functions to determine character properties. # **Examples** ```python # Example 1 print(unicode_to_utf8("Hello, World!")) # Expected output: b'Hello, World!' print(utf8_to_unicode(b'Hello, World!')) # Expected output: 'Hello, World!' # Example 2 print(is_unicode_digit('5')) # Expected output: True print(is_unicode_digit('m')) # Expected output: False # Example 3 unicode_str = "Hello, 123!" properties = unicode_properties(unicode_str) print(properties['1']['is_digit']) # Expected output: True print(properties['H']['is_alpha']) # Expected output: True print(properties['!']['is_printable']) # Expected output: True ``` # **Performance Requirements** - Ensure that your functions handle typical Unicode strings efficiently. - Avoid using deprecated APIs. Focus on using the efficient, modern methods described in the documentation. Good luck!

answer:def unicode_to_utf8(unicode_str: str) -> bytes: Convert a given Unicode string to its UTF-8 encoded byte string. :param unicode_str: The input Unicode string. :return: The UTF-8 encoded byte string. return unicode_str.encode('utf-8') def utf8_to_unicode(utf8_bytes: bytes) -> str: Convert a given UTF-8 encoded byte string back to a Unicode string. :param utf8_bytes: The input UTF-8 encoded byte string. :return: The resulting Unicode string. return utf8_bytes.decode('utf-8') def is_unicode_digit(unicode_char: str) -> bool: Check if the given Unicode character is a digit. :param unicode_char: The Unicode character to check. :return: `True` if the character represents a digit, `False` otherwise. return unicode_char.isdigit() def unicode_properties(unicode_str: str) -> dict: Retrieve properties of each character in the Unicode string. :param unicode_str: The input Unicode string. :return: A dictionary with characters as keys and dictionaries of properties as values. return {char: { 'is_digit': char.isdigit(), 'is_alpha': char.isalpha(), 'is_printable': char.isprintable() } for char in unicode_str}

question:<|Analysis Begin|> The provided documentation gives an overview of the `torch.fx` module, specifically focusing on Graph manipulation, the structure of Graphs, Node instances, and various methods for transforming, rewriting, and analyzing model graphs. The documentation includes examples of creating new GraphModules, modifying existing Graphs, and replacing patterns within Graphs. Key concepts covered in the documentation: 1. **FX Transforms** - General structure of a transform function which takes a `torch.nn.Module`, traces it to get a `Graph`, modifies it, and returns a new `GraphModule`. 2. **Graph Basics** - Representation of methods using `Graph` and `Node` instances. 3. **Graph Manipulation** - Techniques for modifying Graphs directly or using proxy objects. 4. **Subgraph Rewriting** - Utility to perform pattern-based replacement within a graph. 5. **Transforming and Interpreting Graphs** - Usage of the Interpreter design pattern to run or transform Graphs. 6. **Debugging** - Techniques for debugging graph transformations by printing, using `pdb`, or copying generated code. Given this detailed overview and practical examples, we can design a challenging question that assesses a student's ability to: - Trace a `torch.nn.Module`. - Manipulate its `Graph`. - Implement a specific transformation. <|Analysis End|> <|Question Begin|> # Coding Assessment Question: Custom FX Transformation Objective: Implement a custom FX transformation that replaces all instances of the `torch.nn.functional.gelu` activation function with `torch.nn.functional.relu` in a given `torch.nn.Module`. Background: In many scenarios, you may want to modify your neural network's structure post-hoc for various reasons, such as improving inference speed or utilizing a different activation function for experimentation. The `torch.fx` module provides utilities to enable such modifications by representing the computation of `torch.nn.Module` in the form of a Graph and allowing for transformations on this Graph. Task: Write a function `replace_gelu_with_relu` that accepts an input `torch.nn.Module` and returns a new `torch.nn.Module` where all instances of the `gelu` function are replaced with the `relu` function. Your function should: 1. Symbolically trace the input module to acquire its Graph. 2. Traverse and modify the Graph to replace `gelu` with `relu`. 3. Return a new `GraphModule` with the modified Graph. Expected Function Signature: ```python import torch import torch.fx def replace_gelu_with_relu(model: torch.nn.Module) -> torch.nn.Module: pass ``` Example Usage: ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.fx class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.linear = nn.Linear(4, 4) def forward(self, x): x = self.linear(x) x = F.gelu(x) # gelu will be replaced return x model = MyModule() print("Original Model:") print(model) transformed_model = replace_gelu_with_relu(model) print("nTransformed Model:") print(transformed_model) ``` Constraints: - You can assume the module does not use dynamic control flow. - The function should maintain the original module's substructure and parameters. Performance Criteria: - **Correctness:** The transformed model should function correctly with no runtime errors. - **Completeness:** All `gelu` activations must be replaced with `relu`. - **Clarity:** The code should be well-organized and easy to understand. Hints: - Utilize the `torch.fx.symbolic_trace` function to trace the model and acquire its Graph. - Iterate through the nodes of the Graph to identify and replace `gelu` calls. - Construct and return a new `GraphModule` based on the modified Graph. Good luck!

answer:import torch import torch.nn.functional as F import torch.fx def replace_gelu_with_relu(model: torch.nn.Module) -> torch.nn.Module: class ReplaceGeluWithRelu(torch.fx.Transformer): def call_function(self, target, args, kwargs): if target == F.gelu: target = F.relu return super().call_function(target, args, kwargs) traced = torch.fx.symbolic_trace(model) transformer = ReplaceGeluWithRelu(traced) transformed_graph = transformer.transform() return torch.fx.GraphModule(transformed_graph, transformed_graph.graph) # Example usage: class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear(x) x = F.gelu(x) # gelu will be replaced return x model = MyModule() print("Original Model:") print(model) transformed_model = replace_gelu_with_relu(model) print("nTransformed Model:") print(transformed_model)

Released under the chat License.

has loaded