Skip to content
🤔prompts chat🧠
🔍
question:Coding a neural network from scratch using Python: Explain the structure and use of a basic feedforward neural network, create weights and biases, forward propagate, implement activation functions, backpropagate and finally train the network using gradient descent. Please provide practical Python code snippets with clear documentation for each step.

answer:import numpy as np def sigmoid(x): Sigmoid activation function. return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): Derivative of the sigmoid activation function. return x * (1 - x) class BasicNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): # Initialize weights and biases self.weights_input_hidden = np.random.rand(input_size, hidden_size) self.weights_hidden_output = np.random.rand(hidden_size, output_size) self.hidden_bias = np.random.rand(1, hidden_size) self.output_bias = np.random.rand(1, output_size) def forward_propagate(self, inputs): Forward propagate inputs through the network. self.hidden_layer_input = np.dot(inputs, self.weights_input_hidden) + self.hidden_bias self.hidden_layer_output = sigmoid(self.hidden_layer_input) self.final_input = np.dot(self.hidden_layer_output, self.weights_hidden_output) + self.output_bias self.final_output = sigmoid(self.final_input) return self.final_output def backpropagate(self, inputs, expected_output, learning_rate): Backpropagate the error and update weights and biases. # Calculate the error error = expected_output - self.final_output d_output = error * sigmoid_derivative(self.final_output) error_hidden_layer = d_output.dot(self.weights_hidden_output.T) d_hidden_layer = error_hidden_layer * sigmoid_derivative(self.hidden_layer_output) # Update weights and biases self.weights_hidden_output += self.hidden_layer_output.T.dot(d_output) * learning_rate self.weights_input_hidden += inputs.T.dot(d_hidden_layer) * learning_rate self.output_bias += np.sum(d_output, axis=0, keepdims=True) * learning_rate self.hidden_bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rate def train(self, inputs, expected_output, learning_rate, epochs): Train the neural network using gradient descent. for _ in range(epochs): output = self.forward_propagate(inputs) self.backpropagate(inputs, expected_output, learning_rate) return output

question:Given a binary tree, write a recursive function to find the sum of all the nodes in the tree. Additionally, determine and return the maximum value among all the nodes in the tree. The function should have a time complexity of O(n), where n is the number of nodes in the tree.

answer:class TreeNode: def __init__(self, value=0, left=None, right=None): self.value = value self.left = left self.right = right def sum_and_max_of_tree(root): Returns the sum of all nodes and the maximum value in the binary tree. Args: root (TreeNode): The root node of the binary tree. Returns: (int, int): A tuple containing the sum of all nodes and the maximum value in the tree. if root is None: return 0, float('-inf') left_sum, left_max = sum_and_max_of_tree(root.left) right_sum, right_max = sum_and_max_of_tree(root.right) total_sum = root.value + left_sum + right_sum max_value = max(root.value, left_max, right_max) return total_sum, max_value

question:Create a pythonic function named `string_components` that accepts a single parameter, `input_string`, which must be a string of minimum length 6. This function is supposed to return a tuple consisting of two elements: the first element is the substring that starts at index 3 of `input_string`, and the second element is a list of individual letters (characters) in `input_string` up to index 2. If the `input_string` does not meet the length requirement, the function should raise a ValueError. Ensure that you utilize the docstring and necessary testing to validate the function's correctness. Also, write a different check function with its own docstring to confirm the expected behavior of `string_components`.

answer:def string_components(input_string): Returns a tuple consisting of a substring starting from index 3 and a list of characters up to index 2. Args: input_string (str): The input string with a minimum length of 6. Returns: tuple: (substring from index 3, list of characters up to index 2). Raises: ValueError: If the input_string is less than 6 characters long. if len(input_string) < 6: raise ValueError("Input string must be at least 6 characters long.") substring = input_string[3:] character_list = list(input_string[:3]) return (substring, character_list)

question:Create a Python function, 'string_reverser', that takes in a string as input and returns a new string with the characters of the input string reversed.

answer:def string_reverser(input_string): Returns the reversed string of the input string. :param input_string: The string to be reversed. :return: The reversed string. return input_string[::-1]

Released under the chat License.

has loaded