Skip to content
🤔prompts chat🧠
🔍
question:def minimum_robotic_operations(n: int, c: int, samples: List[int]) -> int: Determines the minimum number of robotic operations required to place all samples into the correct boxes. :param n: Total number of samples :param c: Capacity of each robotic operation :param samples: List of sample identifiers :return: Minimum number of robotic operations Examples: >>> minimum_robotic_operations(5, 2, [2, 1, 2, 2, 1]) 3 >>> minimum_robotic_operations(10, 5, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 2 >>> minimum_robotic_operations(10, 3, [1, 2, 2, 1, 3, 4, 4, 3, 5, 5]) 4 pass def test_example_1(): assert minimum_robotic_operations(5, 2, [2, 1, 2, 2, 1]) == 3 def test_example_2(): assert minimum_robotic_operations(10, 5, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) == 2 def test_example_3(): assert minimum_robotic_operations(10, 3, [1, 2, 2, 1, 3, 4, 4, 3, 5, 5]) == 4 def test_single_sample(): assert minimum_robotic_operations(1, 1, [1]) == 1 def test_capacity_equal_samples(): assert minimum_robotic_operations(4, 4, [1, 2, 3, 4]) == 1 def test_capacity_more_than_samples(): assert minimum_robotic_operations(3, 5, [3, 2, 1]) == 1 def test_capacity_one(): assert minimum_robotic_operations(5, 1, [1, 2, 3, 4, 5]) == 5 def test_all_samples_same_box(): assert minimum_robotic_operations(6, 2, [1, 1, 1, 1, 1, 1]) == 3

answer:def minimum_robotic_operations(n, c, samples): Determines the minimum number of robotic operations required to place all samples into the correct boxes. :param n: Total number of samples :param c: Capacity of each robotic operation :param samples: List of sample identifiers :return: Minimum number of robotic operations operation_count = 0 remaining_capacity = c for sample_id in samples: if remaining_capacity == 0: operation_count += 1 remaining_capacity = c remaining_capacity -= 1 # Final operation for any remaining samples if remaining_capacity < c: operation_count += 1 return operation_count

question:class ZooMap: def __init__(self, n: int, m: int): Initialize the zoo map with dimensions n x m. def place(self, r: int, c: int): Place a special item in the cell located at row r and column c. def remove(self, r: int, c: int): Remove the special item from the cell located at row r and column c. def count_items(self, x1: int, y1: int, x2: int, y2: int) -> int: Count the total number of special items in the rectangular area from cell (x1, y1) to cell (x2, y2) inclusive. from solution import ZooMap def test_zoo_map_operations(): zoo_map = ZooMap(4, 4) zoo_map.place(1, 1) zoo_map.place(2, 2) assert zoo_map.count_items(1, 1, 2, 2) == 2 zoo_map.remove(1, 1) assert zoo_map.count_items(1, 1, 2, 2) == 1 def test_counts_in_different_areas(): zoo_map = ZooMap(3, 3) zoo_map.place(2, 2) zoo_map.place(3, 3) assert zoo_map.count_items(1, 1, 3, 3) == 2 zoo_map.remove(2, 2) assert zoo_map.count_items(1, 1, 3, 3) == 1 assert zoo_map.count_items(2, 2, 3, 3) == 1 assert zoo_map.count_items(2, 2, 2, 2) == 0 def test_empty_initial_state(): zoo_map = ZooMap(5, 5) assert zoo_map.count_items(1, 1, 5, 5) == 0 zoo_map.place(3, 3) assert zoo_map.count_items(3, 3, 3, 3) == 1 assert zoo_map.count_items(1, 1, 5, 5) == 1 def test_large_grid(): zoo_map = ZooMap(1000, 1000) zoo_map.place(500, 500) zoo_map.place(1000, 1000) assert zoo_map.count_items(1, 1, 1000, 1000) == 2 assert zoo_map.count_items(500, 500, 500, 500) == 1 assert zoo_map.count_items(999, 999, 1000, 1000) == 1

answer:class ZooMap: def __init__(self, n, m): self.n = n self.m = m self.grid = [[0] * m for _ in range(n)] def place(self, r, c): self.grid[r - 1][c - 1] = 1 def remove(self, r, c): self.grid[r - 1][c - 1] = 0 def count_items(self, x1, y1, x2, y2): total = 0 for i in range(x1 - 1, x2): for j in range(y1 - 1, y2): total += self.grid[i][j] return total

question:def min_operations(t: int, test_cases: List[int]) -> List[int]: Return the minimum number of operations needed to rearrange the deck of cards. Parameters: t (int): Number of test cases test_cases (list of int): List of n values for each test case Returns: list of int: Minimum number of operations for each test case >>> min_operations(2, [4, 5]) [2, 3] >>> min_operations(3, [2, 3, 6]) [1, 2, 3] >>> min_operations(1, [100]) [50]

answer:def min_operations(t, test_cases): Return the minimum number of operations needed to rearrange the deck of cards. Parameters: t (int): Number of test cases test_cases (list of int): List of n values for each test case Returns: list of int: Minimum number of operations for each test case results = [] for n in test_cases: # The number of operations needed to arrange the deck is (n + 1) // 2 results.append((n + 1) // 2) return results

question:def min_jumps(nums: List[int]) -> int: Given a list of integers where each integer represents the maximum jump length from that position, determine the minimum number of jumps required to reach the last index of the list. Parameters: nums (List[int]): A list of integers representing the maximum jump lengths from each position. Returns: int: The minimum number of jumps needed to reach the last index, or -1 if it is not possible to reach the last index. >>> min_jumps([2, 3, 1, 1, 4]) 2 >>> min_jumps([3, 2, 1, 0, 4]) -1 >>> min_jumps([0]) 0

answer:def min_jumps(nums): Returns the minimum number of jumps needed to reach the last index of the list, or -1 if it is not possible to reach the last index. n = len(nums) if n <= 1: return 0 if nums[0] == 0: return -1 max_reach = nums[0] steps = nums[0] jumps = 1 for i in range(1, n): if i == n - 1: return jumps max_reach = max(max_reach, i + nums[i]) steps -= 1 if steps == 0: jumps += 1 if i >= max_reach: return -1 steps = max_reach - i return -1

Released under the chat License.

has loaded