Skip to content
🤔prompts chat🧠
🔍
question:from typing import List def count_vowels(datasets: List[List[str]]) -> List[List[int]]: Takes a list of lists of strings and returns a list of lists of integers representing the count of vowels (a, e, i, o, u) in each string. >>> count_vowels([ ... ["hello", "WORLD", "Program"], ... ["Python", "Programming", "is", "Fun"], ... ["vowels", "in", "strings"] ... ]) == [ ... [2, 1, 2], ... [1, 3, 1, 1], ... [2, 1, 1] ... ] >>> count_vowels([]) == [] >>> count_vowels([["A", "E", "I", "O", "U"]]) == [[1, 1, 1, 1, 1]] >>> count_vowels([["bcdfg", "hjklm", "npqrstvwxyz"]]) == [[0, 0, 0]] >>> count_vowels([["aAeEiIoOuU", "AaEeIiOoUu"]]) == [[10, 10]] >>> count_vowels([["a", "b", "c", "e"]]) == [[1, 0, 0, 1]] >>> count_vowels([["thisisaverylongstringwithsomevowels"]]) == [[11]]

answer:def count_vowels(datasets): Takes a list of lists of strings and returns a list of lists of integers representing the count of vowels (a, e, i, o, u) in each string. :param datasets: List of lists of strings :return: List of lists of integers vowels = set('aeiouAEIOU') result = [] for dataset in datasets: counts = [sum(1 for char in string if char in vowels) for string in dataset] result.append(counts) return result

question:def can_reduce_to_single_integer(sequences: List[List[int]]) -> List[str]: Determine if it is possible to obtain a single integer by repeatedly performing the operation. >>> can_reduce_to_single_integer([[1, 2, 3]]) == ["NO"] >>> can_reduce_to_single_integer([[2, 4, 6, 8]]) == ["YES"] >>> can_reduce_to_single_integer([[1, 3, 5, 2, 4]]) == ["YES"] >>> can_reduce_to_single_integer([[1, 2, 3], [2, 4, 6, 8], [1, 3, 5, 2, 4]]) == ["NO", "YES", "YES"] pass def process_input(t: int, test_cases: List[List[int]]) -> List[str]: Process the input to determine the result for each test case. >>> process_input(3, [[3, 1, 2, 3], [4, 2, 4, 6, 8], [5, 1, 3, 5, 2, 4]]) == ["NO", "YES", "YES"] pass

answer:def can_reduce_to_single_integer(sequences): results = [] for sequence in sequences: has_adjacent_same_parity = any( (sequence[i] % 2 == sequence[i + 1] % 2) for i in range(len(sequence) - 1) ) if has_adjacent_same_parity: results.append("YES") else: results.append("NO") return results def process_input(t, test_cases): sequences = [test_cases[i][1:] for i in range(t)] return can_reduce_to_single_integer(sequences)

question:def is_consistent(timings, k): Determines if the lap timings are consistent based on the given K value. Args: timings (List[int]): List of lap timings in seconds. k (int): The maximum allowable difference between the maximum and minimum lap times for the sequence to be consistent. Returns: bool: True if the sequence is consistent, False otherwise. Examples: >>> is_consistent([30, 40, 35, 45], 10) False >>> is_consistent([10, 10, 15, 20, 25], 5) False >>> is_consistent([50, 52, 54], 1) False >>> is_consistent([10, 15, 12, 14], 5) True >>> is_consistent([1, 1, 1, 1], 0) True pass def process_test_cases(test_cases): Processes multiple test cases to determine if the lap timings are consistent for each. Args: test_cases (List[Tuple[int, int, List[int]]]): A list of tuples where each tuple contains: - The number of lap times (int) - The maximum allowable difference (int) - A list of lap timings (List[int]) Returns: List[str]: List of strings "Consistent" or "Inconsistent" for each test case. Examples: >>> test_cases = [(4, 10, [30, 40, 35, 45]), (5, 5, [10, 10, 15, 20, 25]), (3, 1, [50, 52, 54])] >>> process_test_cases(test_cases) ['Inconsistent', 'Inconsistent', 'Inconsistent'] >>> test_cases = [(4, 10, [30, 35, 33, 32]), (5, 7, [10, 15, 12, 14, 16]), (3, 2, [50, 51, 52])] >>> process_test_cases(test_cases) ['Consistent', 'Consistent', 'Consistent'] pass from solution import is_consistent, process_test_cases def test_is_consistent_case1(): assert is_consistent([30, 40, 35, 45], 10) == False def test_is_consistent_case2(): assert is_consistent([10, 10, 15, 20, 25], 5) == False def test_is_consistent_case3(): assert is_consistent([50, 52, 54], 1) == False def test_is_consistent_case4(): assert is_consistent([10, 15, 12, 14], 5) == True def test_is_consistent_case5(): assert is_consistent([1, 1, 1, 1], 0) == True def test_process_test_cases(): test_cases = [ (4, 10, [30, 40, 35, 45]), (5, 5, [10, 10, 15, 20, 25]), (3, 1, [50, 52, 54]) ] assert process_test_cases(test_cases) == ["Inconsistent", "Inconsistent", "Inconsistent"] def test_process_test_cases_mixed(): test_cases = [ (4, 10, [30, 35, 33, 32]), (5, 7, [10, 15, 12, 14, 16]), (3, 2, [50, 51, 52]) ] assert process_test_cases(test_cases) == ["Consistent", "Consistent", "Consistent"]

answer:def is_consistent(timings, k): Determines if the lap timings are consistent based on the given K value. max_time = max(timings) min_time = min(timings) return (max_time - min_time) <= k def process_test_cases(test_cases): Processes multiple test cases to determine if the lap timings are consistent for each. results = [] for n, k, timings in test_cases: if is_consistent(timings, k): results.append("Consistent") else: results.append("Inconsistent") return results

question:def can_make_all_ones(T: int, cases: List[int]) -> List[str]: Determines if it is possible to make all cells 1 in an NxN grid by toggling the states of the cells as per the given rules. Parameters: - T: Number of test cases - cases: List of integers representing the size of the grid for each test case Returns: - List of strings "YES" or "NO" for each test case

answer:def can_make_all_ones(T, cases): Determines if it is possible to make all cells 1 in an NxN grid by toggling the states of the cells as per the given rules. Parameters: - T: Number of test cases - cases: List of integers representing the size of the grid for each test case Returns: - List of strings "YES" or "NO" for each test case results = [] for N in cases: # Determining if all cells can be turned to 1 if N % 2 == 1: results.append("YES") else: results.append("NO") return results

Released under the chat License.

has loaded