Skip to content
🤔prompts chat🧠
🔍
question:def is_valid_pyramid(n, words): Determines whether the series of words forms a valid pyramid. >>> is_valid_pyramid(1, ["a"]) "valid" >>> is_valid_pyramid(3, ["a", "ab", "abc"]) "valid" >>> is_valid_pyramid(3, ["a", "abc", "abcd"]) "invalid" >>> is_valid_pyramid(3, ["a", "ab", "ac"]) "invalid" def process_input(input_data): Process input data to determine the validity of multiple test cases. >>> process_input("3nanabnabcn0") ["valid"] >>> process_input("3nanabnabcn4nxnxqnxqenxqeln4nmnmanmannmaxn0") ["valid", "valid", "invalid"] >>> process_input("1nan0") ["valid"] >>> process_input("2nanbn2nabnacn0") ["invalid", "invalid"]

answer:def is_valid_pyramid(n, words): Determines whether the series of words forms a valid pyramid. :param n: An integer representing the number of words :param words: A list of strings :return: "valid" if the series forms a valid pyramid, "invalid" otherwise if n == 0: return "invalid" for i in range(1, n): if len(words[i]) != len(words[i - 1]) + 1: return "invalid" if not words[i].startswith(words[i - 1]): return "invalid" return "valid" def process_input(input_data): Process input data to determine the validity of multiple test cases. :param input_data: A string representing the input :return: A list of results for each test case results = [] lines = input_data.strip().split('n') i = 0 while i < len(lines): n = int(lines[i]) if n == 0: break words = lines[i+1:i+1+n] results.append(is_valid_pyramid(n, words)) i += n + 1 return results if __name__ == "__main__": import sys input_data = sys.stdin.read() results = process_input(input_data) for result in results: print(result)

question:def unique_absolute_differences(test_cases): Given an array of N integers, find the number of unique absolute differences that can be formed between any two elements in the array. Parameters: test_cases (List[Tuple[int, List[int]]]): A list of test cases, each containing an integer N and a list of N integers. Returns: List[int]: A list of results, each representing the number of unique absolute differences for the corresponding test case. >>> unique_absolute_differences([(3, [10, 20, 30]), (4, [-5, 0, 5, 10])]) [2, 3]

answer:def unique_absolute_differences(test_cases): results = [] for t in test_cases: N, array = t unique_diffs = set() for i in range(N): for j in range(i + 1, N): abs_diff = abs(array[i] - array[j]) unique_diffs.add(abs_diff) results.append(len(unique_diffs)) return results # For directly running in the solution segment if __name__ == "__main__": T = int(input().strip()) test_cases = [] for _ in range(T): N = int(input().strip()) array = list(map(int, input().strip().split())) test_cases.append((N, array)) results = unique_absolute_differences(test_cases) for result in results: print(result)

question:def minimizeCycleTime(tasks): Returns the minimal cycle time to complete each task at least once. >>> minimizeCycleTime([4, 2, 5, 3]) 14 >>> minimizeCycleTime([7, 2, 3, 9, 5]) 26 >>> minimizeCycleTime([1]) 1 >>> minimizeCycleTime([10, 10, 10, 10]) 40 >>> minimizeCycleTime([10000] * 100000) 1000000000

answer:def minimizeCycleTime(tasks): Returns the minimal cycle time to complete each task at least once. :param tasks: List[int] - a list of integers representing task durations :return: int - minimal cycle time return sum(tasks)

question:def evaluateExpression(s: str) -> float: Evaluates a mathematical expression string and returns the result as a float. Args: s (str): The string representation of the mathematical expression. Returns: float: The result of the evaluated expression. Examples: >>> evaluateExpression("3 + 5 / 2") 5.5 >>> evaluateExpression("10 - 3 * 2") 4.0

answer:def evaluateExpression(s): Evaluates a mathematical expression string and returns the result as a float. Args: s (str): The string representation of the mathematical expression. Returns: float: The result of the evaluated expression. import re # Remove spaces s = s.replace(" ", "") # Helper function to evaluate the expression using the shunting yard algorithm def eval_postfix(expression): stack = [] for token in expression: if re.match(r"-?d+.?d*", token): stack.append(float(token)) else: b = stack.pop() a = stack.pop() if token == '+': stack.append(a + b) elif token == '-': stack.append(a - b) elif token == '*': stack.append(a * b) elif token == '/': stack.append(a / b) return stack[0] # Helper function to convert infix expression to postfix expression (Reverse Polish Notation) def infix_to_postfix(expression): precedence = {'+': 1, '-': 1, '*': 2, '/': 2} output = [] operators = [] i = 0 while i < len(expression): if expression[i].isdigit() or (expression[i] == '.' and i+1 < len(expression) and expression[i+1].isdigit()): num = [] while i < len(expression) and (expression[i].isdigit() or expression[i] == '.'): num.append(expression[i]) i += 1 output.append(''.join(num)) else: while (operators and operators[-1] in precedence and precedence[operators[-1]] >= precedence[expression[i]]): output.append(operators.pop()) operators.append(expression[i]) i += 1 while operators: output.append(operators.pop()) return output postfix_expression = infix_to_postfix(s) result = eval_postfix(postfix_expression) return result

Released under the chat License.

has loaded