Appearance
question:**Title**: Advanced Text Processing with Python **Objective**: Demonstrate your understanding of various text processing modules in Python by implementing a function that utilizes multiple modules to achieve specific text manipulation tasks. **Problem Statement**: You need to write a function `process_text(input_text: str) -> dict` that processes a string `input_text` and returns a dictionary containing the following information: 1. **words_list**: A list of all unique words from the input text, sorted alphabetically. 2. **word_frequencies**: A dictionary where the keys are words and the values are their respective frequencies in the input text. 3. **top_5_words**: A list of the top 5 most frequent words in the input text. 4. **wrapped_text**: The text wrapped to a width of 50 characters per line. 5. **word_differences**: A list of words that are present in the input text but not in a given comparison text. You should use the following modules: `string`, `re`, `difflib`, and `textwrap` to implement the required functionality. **Function Signature**: ```python def process_text(input_text: str, comparison_text: str) -> dict: pass ``` **Input**: - `input_text` (str): A string representing the text to be processed. - `comparison_text` (str): A string representing the text to be compared against for word differences. **Output**: - A dictionary with the following structure: ```python { "words_list": List[str], "word_frequencies": Dict[str, int], "top_5_words": List[str], "wrapped_text": str, "word_differences": List[str] } ``` **Example**: ```python input_text = "Hello world! This is a test. Hello again." comparison_text = "This is a comparison text. Hello universe!" result = process_text(input_text, comparison_text) # Example output: { "words_list": ['a', 'again', 'hello', 'is', 'test', 'this', 'world'], "word_frequencies": {'hello': 2, 'world': 1, 'this': 1, 'is': 1, 'a': 1, 'test': 1, 'again': 1}, "top_5_words": ['hello', 'world', 'this', 'is', 'a'], "wrapped_text": 'Hello world! This is a test. Hello again.', "word_differences": ['again', 'test', 'world'] } ``` **Constraints**: - You may assume the input texts are non-empty and contain only standard punctuation and whitespace. - Words should be considered case-insensitive (i.e., "Hello" and "hello" should be treated as the same word). **Guidance**: 1. Use the `string` module to handle punctuation and whitespace. 2. Use the `re` module to split the text into words. 3. Use the `difflib` module to find the differences in words between `input_text` and `comparison_text`. 4. Use the `textwrap` module to wrap the text to the required width. **Performance Requirements**: - The function should efficiently handle text inputs with up to 10,000 words.
answer:import string import re import difflib import textwrap from collections import Counter def process_text(input_text: str, comparison_text: str) -> dict: # Normalize the text to lower case input_text = input_text.lower() comparison_text = comparison_text.lower() # Remove punctuation and split into words translator = str.maketrans('', '', string.punctuation) words = re.findall(r'bw+b', input_text.translate(translator)) comparison_words = re.findall(r'bw+b', comparison_text.translate(translator)) # Get unique words list sorted unique_words = sorted(set(words)) # Frequency of each word word_frequencies = dict(Counter(words)) # Top 5 frequent words top_5_words = [word for word, freq in Counter(words).most_common(5)] # Wrap the text to 50 characters per line wrapped_text = textwrap.fill(input_text, width=50) # Words present in input_text but not in comparison_text word_differences = sorted(set(words) - set(comparison_words)) return { "words_list": unique_words, "word_frequencies": word_frequencies, "top_5_words": top_5_words, "wrapped_text": wrapped_text, "word_differences": word_differences }
question:# Seaborn Coding Assessment Objective To assess your understanding of seaborn, you are required to write a function that performs a series of data visualizations on a given dataset. The goal is to explore the dataset using different seaborn plot types and customize the plots for better readability and presentation. Problem Statement Create a function named `visualize_data` that takes a pandas DataFrame as input and outputs a series of visualizations using seaborn. The function should: 1. **Relational Plot**: Create a scatter plot to visualize the relationship between two numerical columns, with different colors and styles based on different categories. 2. **Distribution Plot**: Generate a histogram and kernel density estimate (KDE) plot of a specified numerical column, distinguished by categories. 3. **Categorical Plot**: Draw a bar plot to show the average value of a numerical column for different levels of a categorical column. 4. **Joint Plot**: Create a joint plot displaying the relationship between two numerical columns along with their marginal distributions. 5. Customize each plot with appropriate titles, axis labels, and legends where applicable. Input - `df`: A pandas DataFrame containing the following columns: - At least three numerical columns (e.g., `num_col1`, `num_col2`, `num_col3`) - At least two categorical columns (e.g., `cat_col1`, `cat_col2`) Output The function should produce the following plots: 1. A scatter plot using `seaborn.relplot` with: - x-axis: `num_col1` - y-axis: `num_col2` - Color (`hue`): `cat_col1` - Style (`style`): `cat_col2` 2. A distribution plot using `seaborn.displot` with: - x-axis: `num_col3` - Color (`hue`): `cat_col1` - Include both histogram and KDE 3. A bar plot using `seaborn.catplot` with: - x-axis: `cat_col1` - y-axis: Mean of `num_col1` - Color (`hue`): `cat_col2` 4. A joint plot using `seaborn.jointplot` with: - x-axis: `num_col1` - y-axis: `num_col2` - Color (`hue`): `cat_col1` Constraints - The DataFrame `df` should not be empty, and it should contain the specified columns. - The function should handle any potential errors gracefully, including missing or mismatched column names. Example Usage ```python import pandas as pd import seaborn as sns # Load the tips dataset as an example df = sns.load_dataset("tips") def visualize_data(df): # Scatter plot sns.relplot( data=df, x="total_bill", y="tip", hue="smoker", style="time" ).set(title="Relationship between Total Bill and Tip") # Distribution plot sns.displot( data=df, x="total_bill", hue="time", kde=True ).set(title="Distribution of Total Bill") # Bar plot sns.catplot( data=df, kind="bar", x="day", y="total_bill", hue="sex" ).set(title="Average Total Bill per Day") # Joint plot sns.jointplot( data=df, x="total_bill", y="tip", hue="time" ).set_axis_labels("Total Bill", "Tip") # Call the function visualize_data(df) ``` Your implementation should follow the example format shown above, but using the columns `num_col1`, `num_col2`, `num_col3`, `cat_col1`, and `cat_col2` from a DataFrame provided as the input to your function.
answer:import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def visualize_data(df): Generates a series of visualizations to explore the dataset using seaborn. Parameters: df (pd.DataFrame): The input data frame containing at least three numerical columns and two categorical columns. if df.empty: raise ValueError("The DataFrame should not be empty") required_numeric_cols = ['num_col1', 'num_col2', 'num_col3'] required_cat_cols = ['cat_col1', 'cat_col2'] for col in required_numeric_cols + required_cat_cols: if col not in df.columns: raise ValueError(f"Missing required column: {col}") # Scatter plot scatter_plot = sns.relplot( data=df, x='num_col1', y='num_col2', hue='cat_col1', style='cat_col2' ) scatter_plot.fig.suptitle('Relationship between Num_Col1 and Num_Col2') scatter_plot.set_axis_labels('Num_Col1', 'Num_Col2') # Distribution plot dist_plot = sns.displot( data=df, x='num_col3', hue='cat_col1', kde=True ) dist_plot.fig.suptitle('Distribution of Num_Col3') dist_plot.set_axis_labels('Num_Col3', 'Density') # Bar plot bar_plot = sns.catplot( data=df, kind='bar', x='cat_col1', y='num_col1', hue='cat_col2' ) bar_plot.fig.suptitle('Average Num_Col1 per Cat_Col1') bar_plot.set_axis_labels('Cat_Col1', 'Average Num_Col1') # Joint plot joint_plot = sns.jointplot( data=df, x='num_col1', y='num_col2', hue='cat_col1' ) joint_plot.fig.suptitle('Joint Distribution of Num_Col1 and Num_Col2') joint_plot.set_axis_labels('Num_Col1', 'Num_Col2') plt.show()
question:# Command-Line Shopping Cart Design a command-line shopping cart application using the `cmd` module. Objective Create a command-line interface for managing a shopping cart. Users should be able to add items, remove items, view the cart, and check out. The application should support saving and loading the cart to and from a file. Instructions 1. **Create a subclass of `cmd.Cmd` named `ShoppingCartCmd`.** 2. **Implement the following commands:** - `add <item> <price> <quantity>`: Add an item to the shopping cart. If the item already exists, update its quantity. Example: `add apple 1.50 4` - `remove <item>`: Remove an item from the shopping cart. Example: `remove apple` - `view`: Display all items in the shopping cart along with their total price. - `clear`: Clear all items from the shopping cart. - `checkout`: Display the total amount due, save the cart to a file named `checkout.txt`, and exit the application. - `load <filename>`: Load a shopping cart from a file. - `save <filename>`: Save the current shopping cart to a file. Implementation Details - **Input and Output Formats:** - For commands other than `view` and `checkout`, output a confirmation or error message. - When viewing the cart, display each item with its price and quantity, and show the total price at the end. - For `checkout`, save the cart contents to `checkout.txt` and include the total price. - **Constraints:** - Prices are non-negative floats. - Quantities are non-negative integers. - Ensure the command format and arguments are correct; display an error message for incorrect inputs. - **Performance Requirements:** - The application should handle dynamic and arbitrary input sizes efficiently. - Read and write operations should properly handle file I/O exceptions. Example Session ``` Welcome to the shopping cart application. Type help or ? to list commands. (cart) add apple 1.50 4 Added 4 apple(s) at 1.50 each. (cart) add banana 0.75 6 Added 6 banana(s) at 0.75 each. (cart) view Item: apple, Price: 1.50, Quantity: 4 Item: banana, Price: 0.75, Quantity: 6 Total Price: 9.00 (cart) remove apple Removed apple from the cart. (cart) view Item: banana, Price: 0.75, Quantity: 6 Total Price: 4.50 (cart) clear Cart is now empty. (cart) checkout Total Amount Due: 0.00 Saved cart to 'checkout.txt'. Exiting application. ``` Fork the script implementation, ensuring your `ShoppingCartCmd` class combines the above requirements. Your output should follow the expected formats accurately. Hints - Use a dictionary to manage the items in the cart. The key can be the item name, and the value can be a tuple of price and quantity. - Utilize the built-in `cmd` methods like `do_`, `precmd()`, and `postcmd()` to implement command functionalities and handle custom behaviors. - Implement file operations using standard Python file I/O.
answer:import cmd import os import json class ShoppingCartCmd(cmd.Cmd): intro = 'Welcome to the shopping cart application. Type help or ? to list commands.n' prompt = '(cart) ' def __init__(self): super().__init__() self.cart = {} def do_add(self, arg): 'Add an item to the cart: add <item> <price> <quantity>' try: item, price, quantity = arg.split() price = float(price) quantity = int(quantity) if item in self.cart: self.cart[item][1] += quantity print(f"Updated {item} quantity to {self.cart[item][1]}") else: self.cart[item] = [price, quantity] print(f"Added {quantity} {item}(s) at {price} each.") except ValueError: print("Invalid arguments. Usage: add <item> <price> <quantity>") def do_remove(self, arg): 'Remove an item from the cart: remove <item>' if arg in self.cart: del self.cart[arg] print(f"Removed {arg} from the cart.") else: print(f"{arg} is not in the cart.") def do_view(self, arg): 'View the items in the cart' if not self.cart: print("Cart is empty.") else: total = 0.0 for item, (price, quantity) in self.cart.items(): print(f"Item: {item}, Price: {price:.2f}, Quantity: {quantity}") total += price * quantity print(f"Total Price: {total:.2f}") def do_clear(self, arg): 'Clear all items from the cart' self.cart.clear() print("Cart is now empty.") def do_checkout(self, arg): 'Display the total amount due, save the cart to checkout.txt, and exit the application' total = sum(price * quantity for price, quantity in self.cart.values()) with open('checkout.txt', 'w') as f: for item, (price, quantity) in self.cart.items(): f.write(f"Item: {item}, Price: {price:.2f}, Quantity: {quantity}n") f.write(f"Total Price: {total:.2f}n") print(f"Total Amount Due: {total:.2f}") print("Saved cart to 'checkout.txt'. Exiting application.") return True def do_load(self, arg): 'Load a shopping cart from a file: load <filename>' if not os.path.exists(arg): print(f"File {arg} does not exist.") return with open(arg, 'r') as f: self.cart = json.load(f) print(f"Loaded cart from {arg}.") def do_save(self, arg): 'Save the current shopping cart to a file: save <filename>' if not arg: print("Please specify a filename.") return with open(arg, 'w') as f: json.dump(self.cart, f) print(f"Saved cart to {arg}.") def do_exit(self, arg): 'Exit the shopping cart application' print("Exiting application.") return True
question:<|Analysis Begin|> The provided documentation outlines various parts of the Python language, beginning with an introduction and moving through more complex topics such as control flow tools, data structures, modules, input and output, and classes. Focusing on what students need to know, it would be beneficial to create a question that not only tests their knowledge of basic Python syntax and data structures but also their ability to use modules, manipulate data, and handle errors. Given the breadth of the documentation, a suitable coding assessment question could involve: - File reading and writing, - Data manipulation using several Python data structures (such as dictionaries and lists), - Error handling, - Function and class definitions, - Module usage, possibly importing standard modules such as `json`. <|Analysis End|> <|Question Begin|> # Coding Assessment Question Objective: Create a Python program that reads a structured text file containing student records, processes the data, and outputs summary statistics to a new text file. This task will test your ability to handle file I/O, data manipulation using lists and dictionaries, error handling, and module usage. Problem Statement: You are provided with a text file containing student information. Each line in the file contains information about a student in the following format: ``` student_id, name, grade ``` For example: ``` 1, John Doe, 85 2, Jane Smith, 78 ... ``` Your task is to: 1. Write a function `read_student_records(file_path)` that reads the student information from the given file and returns a list of dictionaries. Each dictionary should represent a student record with keys: 'student_id', 'name', and 'grade'. 2. Write a function `grade_statistics(student_records)` that takes a list of student records and returns a dictionary with the following keys: * `'average_grade'`: The average grade of all students. * `'highest_grade'`: The highest grade among all students. * `'lowest_grade'`: The lowest grade among all students. 3. Write a function `write_statistics_to_file(statistics, output_file_path)` that writes the statistics dictionary to a new file in a readable format. Constraints: - Grades are integers between 0 and 100. - The input file will have at least one student record. - Proper error handling must be included to cover file reading/writing errors. Input and Output Format: 1. **Function:** `read_student_records(file_path)` * **Input:** `file_path` (str) - Path to the input text file. * **Output:** List of dictionaries, each dictionary representing a student. 2. **Function:** `grade_statistics(student_records)` * **Input:** `student_records` (list) - List of dictionaries representing the students. * **Output:** Dictionary with keys `average_grade`, `highest_grade`, and `lowest_grade`. 3. **Function:** `write_statistics_to_file(statistics, output_file_path)` * **Input:** - `statistics` (dict) - Dictionary containing the statistical summaries. - `output_file_path` (str) - Path to the output text file. * **Output:** None (writes to file). Example: Suppose the input text file `students.txt` contains: ``` 1, John Doe, 85 2, Jane Smith, 78 3, Alice Jones, 92 4, Bob Stone, 70 ``` Expected output for the functions would be: **Function:** `read_student_records('students.txt')` ```python [ {'student_id': '1', 'name': 'John Doe', 'grade': 85}, {'student_id': '2', 'name': 'Jane Smith', 'grade': 78}, {'student_id': '3', 'name': 'Alice Jones', 'grade': 92}, {'student_id': '4', 'name': 'Bob Stone', 'grade': 70} ] ``` **Function:** `grade_statistics(student_records)` ```python { 'average_grade': 81.25, 'highest_grade': 92, 'lowest_grade': 70 } ``` **Function:** `write_statistics_to_file(statistics, 'output.txt')` Contents of `output.txt`: ``` Average Grade: 81.25 Highest Grade: 92 Lowest Grade: 70 ``` Performance: - Ensure the program runs efficiently with an expected file size of up to 1MB. Implement these functions carefully and ensure your solution is robust against possible errors.
answer:import os def read_student_records(file_path): Reads student records from a file. Args: file_path (str): Path to the input text file. Returns: list: List of dictionaries containing student records. if not os.path.exists(file_path): raise FileNotFoundError(f"The file {file_path} does not exist.") student_records = [] with open(file_path, 'r') as file: for line in file: student_id, name, grade = line.strip().split(', ') student_records.append({ 'student_id': student_id, 'name': name, 'grade': int(grade) }) return student_records def grade_statistics(student_records): Calculates the average, highest, and lowest grades of the students. Args: student_records (list): List of dictionaries containing student records. Returns: dict: Dictionary containing average, highest, and lowest grades. grades = [student['grade'] for student in student_records] average_grade = sum(grades) / len(grades) highest_grade = max(grades) lowest_grade = min(grades) return { 'average_grade': average_grade, 'highest_grade': highest_grade, 'lowest_grade': lowest_grade } def write_statistics_to_file(statistics, output_file_path): Writes the grade statistics to a file. Args: statistics (dict): Dictionary containing the statistical summaries. output_file_path (str): Path to the output text file. with open(output_file_path, 'w') as file: file.write(f"Average Grade: {statistics['average_grade']:.2f}n") file.write(f"Highest Grade: {statistics['highest_grade']}n") file.write(f"Lowest Grade: {statistics['lowest_grade']}n") # Example usage if __name__ == "__main__": student_records = read_student_records('students.txt') statistics = grade_statistics(student_records) write_statistics_to_file(statistics, 'output.txt')