Skip to content
🤔prompts chat🧠
🔍
question:# Multiclass and Multilabel Classification with Scikit-learn Objective Your task is to implement a multiclass classification and multilabel classification model using scikit-learn meta-estimators. This will assess your understanding of scikit-learn's multi-learning functionalities. Task 1: Multiclass Classification 1. **Implement the multiclass classification method with the OneVsRest strategy**: - Use the Iris dataset for multiclass classification. - The classifier to be used should be `LinearSVC`. - Split the dataset into training and testing datasets using a `80-20` split. - Output the classification accuracy on the test data. **Function signature**: ```python def multiclass_classification(): pass ``` **Expected Output**: ```python # Example output format { "accuracy_score": 0.95 } ``` Task 2: Multilabel Classification 2. **Implement the multilabel classification method**: - Use the following example dataset for multilabel classification: ```python X = [[1, 0], [2, 1], [3, 0], [4, 1], [5, 0]] Y = [[0, 1], [1, 0], [0, 1], [1, 1], [1, 0]] ``` - The classifier to be used should be `RandomForestClassifier`. - Utilize `MultiOutputClassifier` to handle the multilabel classification. - Fit your model on the given dataset and output the predictions for the same dataset. **Function signature**: ```python def multilabel_classification(): pass ``` **Expected Output**: ```python # Example output format { "predictions": [[0, 1], [1, 0], [0, 1], [1, 1], [1, 0]] } ``` # Constraints - Use scikit-learn version `0.24` or higher. - Ensure that the code is well-documented and follows good coding practices, including proper function definitions and return types. - Make sure your solution leverages the correct meta-estimators from `sklearn.multiclass` and `sklearn.multioutput`. # Performance - For Task 1, an accuracy above 90% is considered good. - For Task 2, the output should match the expected predictions given the toy dataset. Good luck!

answer:from sklearn.datasets import load_iris from sklearn.svm import LinearSVC from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier def multiclass_classification(): iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) classifier = OneVsRestClassifier(LinearSVC(random_state=42, max_iter=10000)) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) return {"accuracy_score": accuracy} def multilabel_classification(): X = [[1, 0], [2, 1], [3, 0], [4, 1], [5, 0]] Y = [[0, 1], [1, 0], [0, 1], [1, 1], [1, 0]] classifier = MultiOutputClassifier(RandomForestClassifier(random_state=42)) classifier.fit(X, Y) predictions = classifier.predict(X).tolist() return {"predictions": predictions}

question:**Problem: Asynchronous Task Manager** You are required to implement a simplified asynchronous task manager that executes multiple asynchronous tasks concurrently. You must use the asyncio library and handle specific exceptions defined in the asyncio documentation accordingly. # Requirements: 1. Implement an asynchronous function `perform_task` that simulates performing a task: - Accepts a parameter `task_id` (an integer) which identifies the task. - Randomly raises one of the following exceptions based on predefined probabilities: - `asyncio.TimeoutError` - `asyncio.CancelledError` - `asyncio.InvalidStateError` - `asyncio.SendfileNotAvailableError` - `asyncio.IncompleteReadError` - `asyncio.LimitOverrunError` - Completes successfully if no exception is raised, and returns a string indicating the task's completion, e.g., `"Task <id> completed successfully"`. 2. Implement an asynchronous function `run_tasks` that concurrently manages multiple `perform_task` functions: - Accepts a parameter `n_tasks` which is the number of tasks to run. - Uses `asyncio.gather` to run all tasks concurrently. - Catches and handles each of the exceptions listed above, printing an appropriate message indicating the nature of the exception and continuing with the other tasks. - Returns a list of results for each task, containing either the success message or the exception message. 3. Ensure that `run_tasks` can handle exceptions without terminating prematurely and collects the outcomes of all tasks. # Input: - `n_tasks` (integer): The number of tasks to run concurrently. # Output: - A list of strings, each string being the result of a single task. # Example: ```python import asyncio async def main(): results = await run_tasks(5) for result in results: print(result) # Sample output could be: # Task 1 completed successfully # Task 2 failed due to TimeoutError # Task 3 failed due to CancelledError # Task 4 completed successfully # Task 5 failed due to IncompleteReadError # Run the main function asyncio.run(main()) ``` # Constraints: - You should use appropriate exception handling to manage the specific exceptions listed in the documentation. - The tasks should be executed concurrently to demonstrate the use of asyncio's capabilities.

answer:import asyncio import random async def perform_task(task_id): Simulates performing a task. Randomly raises an exception or completes successfully. exceptions = [ asyncio.TimeoutError, asyncio.CancelledError, asyncio.InvalidStateError, asyncio.IncompleteReadError, asyncio.LimitOverrunError ] probabilities = [0.2, 0.2, 0.2, 0.2, 0.1] # Sum is <1 to allow for success exception = random.choices(exceptions + [None], probabilities + [1-sum(probabilities)])[0] await asyncio.sleep(random.uniform(0.1, 1)) # Simulate some work if exception: raise exception() return f"Task {task_id} completed successfully" async def run_tasks(n_tasks): Manages and runs multiple perform_task functions concurrently, and handles exceptions. tasks = [perform_task(i) for i in range(1, n_tasks + 1)] results = [] for task in asyncio.as_completed(tasks): try: result = await task results.append(result) except asyncio.TimeoutError: results.append("TimeoutError encountered") except asyncio.CancelledError: results.append("CancelledError encountered") except asyncio.InvalidStateError: results.append("InvalidStateError encountered") except asyncio.IncompleteReadError: results.append("IncompleteReadError encountered") except asyncio.LimitOverrunError: results.append("LimitOverrunError encountered") return results

question:# Text-Based Spreadsheet Editor Using `curses` Objective Implement a text-based spreadsheet editor using the Python `curses` module. The spreadsheet will display cells in a grid and allow users to navigate between cells, edit cell contents, and save the data to a file. Requirements 1. **Initialization and Setup**: - Initialize the `curses` library. - Set up a main window with a specific size (e.g., 20 rows by 50 columns). - Enable color functionality. 2. **Grid Display**: - Display cells in a grid format with row and column headers. - Highlight the currently selected cell. 3. **Navigation**: - Allow users to navigate between cells using arrow keys. - Ensure the cursor does not move outside the grid boundary. 4. **Editing Cell Content**: - Allow users to enter and edit text in the cells. - Use `ENTER` key to confirm the input in a cell. 5. **Save to File**: - Provide a way to save the current spreadsheet data to a text file (e.g., pressing 's' key). 6. **Termination**: - Cleanly exit the `curses` program and restore the terminal to normal mode. Input and Output - **Input**: - Arrow keys to navigate. - Alphanumeric keys to edit cell content. - 's' key to save the spreadsheet data to a text file. - 'q' key to exit the application. - **Output**: - A text file with the saved spreadsheet data. Constraints 1. The grid should be a fixed size of 10 x 10 cells. 2. Each cell can hold up to 5 characters of text. 3. Use `curses` functions and methods wherever applicable. Code Skeleton Below is a partial implementation to get you started: ```python import curses def init_screen(): stdscr = curses.initscr() curses.start_color() curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.curs_set(0) return stdscr def draw_grid(stdscr, cursor_y, cursor_x, data): stdscr.clear() for y in range(11): for x in range(11): if y == 0 and x > 0: stdscr.addstr(y, x*6, f"{x-1}", curses.A_BOLD) elif x == 0 and y > 0: stdscr.addstr(y, x*6, f"{y-1}", curses.A_BOLD) elif y > 0 and x > 0: cell_content = data[y-1][x-1] cell_attr = curses.color_pair(1) if (cursor_y == y-1 and cursor_x == x-1) else curses.A_NORMAL stdscr.addstr(y, x*6, f"{cell_content:<5}", cell_attr) stdscr.refresh() def main(stdscr): stdscr = init_screen() cursor_y, cursor_x = 0, 0 data = [["" for _ in range(10)] for _ in range(10)] while True: draw_grid(stdscr, cursor_y, cursor_x, data) key = stdscr.getch() if key == curses.KEY_UP and cursor_y > 0: cursor_y -= 1 elif key == curses.KEY_DOWN and cursor_y < 9: cursor_y += 1 elif key == curses.KEY_LEFT and cursor_x > 0: cursor_x -= 1 elif key == curses.KEY_RIGHT and cursor_x < 9: cursor_x += 1 elif key in [ord('q'), ord('Q')]: break elif key == ord('s'): with open("spreadsheet.txt", "w") as f: for row in data: f.write("t".join(row) + "n") stdscr.addstr(12, 0, "Data saved to spreadsheet.txt") stdscr.refresh() elif key == 10: # Enter key stdscr.addstr(12, 0, "Enter value: ") curses.echo() value = stdscr.getstr(12, 13, 5).decode('utf-8') curses.noecho() data[cursor_y][cursor_x] = value else: pass curses.endwin() if __name__ == "__main__": curses.wrapper(main) ``` Notes 1. Make sure to handle edge cases (e.g., preventing cursor from going out of bounds, ensuring proper display updates). 2. Test the program rigorously to ensure it meets the outlined requirements. If you have any questions, feel free to ask for further clarification.

answer:import curses def init_screen(): stdscr = curses.initscr() curses.start_color() curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.curs_set(0) return stdscr def draw_grid(stdscr, cursor_y, cursor_x, data): stdscr.clear() for y in range(11): for x in range(11): if y == 0 and x > 0: stdscr.addstr(y, x*6, f"{x-1}", curses.A_BOLD) elif x == 0 and y > 0: stdscr.addstr(y, x*6, f"{y-1}", curses.A_BOLD) elif y > 0 and x > 0: cell_content = data[y-1][x-1] cell_attr = curses.color_pair(1) if (cursor_y == y-1 and cursor_x == x-1) else curses.A_NORMAL stdscr.addstr(y, x*6, f"{cell_content:<5}", cell_attr) stdscr.refresh() def main(stdscr): stdscr = init_screen() cursor_y, cursor_x = 0, 0 data = [["" for _ in range(10)] for _ in range(10)] while True: draw_grid(stdscr, cursor_y, cursor_x, data) key = stdscr.getch() if key == curses.KEY_UP and cursor_y > 0: cursor_y -= 1 elif key == curses.KEY_DOWN and cursor_y < 9: cursor_y += 1 elif key == curses.KEY_LEFT and cursor_x > 0: cursor_x -= 1 elif key == curses.KEY_RIGHT and cursor_x < 9: cursor_x += 1 elif key in [ord('q'), ord('Q')]: break elif key == ord('s'): with open("spreadsheet.txt", "w") as f: for row in data: f.write("t".join(row) + "n") stdscr.addstr(12, 0, "Data saved to spreadsheet.txt") stdscr.refresh() elif key == 10: # Enter key stdscr.addstr(12, 0, "Enter value: ") curses.echo() value = stdscr.getstr(12, 13, 5).decode('utf-8') curses.noecho() data[cursor_y][cursor_x] = value else: pass curses.endwin() if __name__ == "__main__": curses.wrapper(main)

question:**Objective**: Demonstrate your understanding of out-of-core learning and incremental model training using scikit-learn. # Problem Statement: You are given a stream of text data for spam email classification. Due to the large volume of emails, it is not feasible to load all data into memory. Your task is to build a system that can classify emails as spam or not using out-of-core learning. # Requirements: 1. **Streaming Instances**: Implement a generator function that simulates the streaming of email data from a file. 2. **Feature Extraction**: Use `HashingVectorizer` to convert email text into feature vectors. 3. **Incremental Learning**: Train an incremental classifier (e.g., `SGDClassifier`) using partial_fit. # Detailed Requirements: 1. **Data Streaming**: - Implement a generator function `stream_emails(file_path)` that reads emails from a file line-by-line. Each line contains a label (0 for non-spam, 1 for spam) and the email text separated by a tab character. The function should yield tuples of (label, email_text). 2. **Feature Vectorization**: - Use `HashingVectorizer` from `sklearn.feature_extraction.text` to transform email texts into feature vectors. Set `n_features` to 2**18. 3. **Model Training**: - Use `SGDClassifier` from `sklearn.linear_model` for incremental training. Make sure to initialize the classifier with `loss='log'` for logistic regression. - Ensure that all possible classes `[0, 1]` are passed to the `partial_fit` during the first call. # Input and Output Format: - **Input**: - A file `emails.txt` where each line contains a label and email text separated by a tab character. - **Output**: - The function should print the classification accuracy after processing each mini-batch of 1000 emails. # Constraints and Performance: - **Memory Constraint**: The solution should be able to process data without loading the entire dataset into memory. - **Performance Requirement**: The mini-batch size is set to 1000. Ensure an efficient implementation to handle high volumes of data. # Implementation: ```python import numpy as np from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score def stream_emails(file_path): Generator function to stream emails from a file. Args: file_path (str): Path to the file containing email data. Yields: tuple: Label and email text. with open(file_path, 'r') as file: for line in file: label, email_text = line.strip().split('t') yield int(label), email_text def train_spam_classifier(file_path): vectorizer = HashingVectorizer(n_features=2**18) classifier = SGDClassifier(loss='log', learning_rate='optimal') batches = [] for idx, (label, email_text) in enumerate(stream_emails(file_path)): batches.append((label, email_text)) if (idx + 1) % 1000 == 0: labels, emails = zip(*batches) X = vectorizer.transform(emails) y = np.array(labels) if idx == 999: classifier.partial_fit(X, y, classes=np.array([0, 1])) else: classifier.partial_fit(X, y) # Reset batches batches = [] # Calculate and print accuracy predictions = classifier.predict(X) accuracy = accuracy_score(y, predictions) print(f'Processed {idx + 1} emails - Accuracy: {accuracy:.4f}') # Example usage train_spam_classifier('emails.txt') ``` **Note**: Ensure the file `emails.txt` is correctly formatted and placed in the correct directory before running the code.

answer:import numpy as np from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score def stream_emails(file_path): Generator function to stream emails from a file. Args: file_path (str): Path to the file containing email data. Yields: tuple: Label and email text. with open(file_path, 'r') as file: for line in file: label, email_text = line.strip().split('t') yield int(label), email_text def train_spam_classifier(file_path): vectorizer = HashingVectorizer(n_features=2**18) classifier = SGDClassifier(loss='log', learning_rate='optimal') batches = [] for idx, (label, email_text) in enumerate(stream_emails(file_path)): batches.append((label, email_text)) if (idx + 1) % 1000 == 0: labels, emails = zip(*batches) X = vectorizer.transform(emails) y = np.array(labels) if idx == 999: classifier.partial_fit(X, y, classes=np.array([0, 1])) else: classifier.partial_fit(X, y) # Reset batches batches = [] # Calculate and print accuracy predictions = classifier.predict(X) accuracy = accuracy_score(y, predictions) print(f'Processed {idx + 1} emails - Accuracy: {accuracy:.4f}') # Example usage # train_spam_classifier('emails.txt')

Released under the chat License.

has loaded