Appearance
question:Consider a function that checks if a string is a valid serialized binary tree preorder traversal. The serial format is defined in such a way that a single letter represents a node and a '#' character represents a null node. Each non-null node can have two children. Write a function in Python that takes a single string representing the preorder traversal of a binary tree and returns a boolean indicating whether the tree is structurally valid. **Function Signature:** ```python def is_valid_serialization(preorder: str) -> bool: ``` # Input - A single string `preorder` which is a comma-separated list of characters where each character is either a lowercase letter `a-z` representing a node or a `#` representing a null node (e.g., `"9,3,4,#,#,1,#,#,2,#,6,#,#"`). # Output - Return a boolean value `True` if the input string represents a valid preorder traversal of a binary tree, else return `False`. # Example ```python print(is_valid_serialization("9,3,4,#,#,1,#,#,2,#,6,#,#")) # True print(is_valid_serialization("1,#")) # False print(is_valid_serialization("9,#,#,1")) # False ```
answer:def is_valid_serialization(preorder: str) -> bool: # Split the input into elements based on commas nodes = preorder.split(',') # Initialize a variable to keep track of the current capacity # or "number of slots" in the tree capacity = 1 # Iterate over each node in the list for node in nodes: # A node consumes one slot capacity -= 1 # If at any point capacity drops below zero, it means the structure is invalid if capacity < 0: return False # If the node is not a null node, it adds two more slots (children) if node != '#': capacity += 2 # All slots should be exactly used up for the tree to be valid return capacity == 0
question:Construct a binary search tree (BST) and implement a method to calculate the depth of the tree. Additionally, integrate functionality to search for a specific value and output the number of comparisons made during the search. Handle duplicate values by extending the tree to the right for duplicates. Complete the code: ```python class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None class BinarySearchTree: def __init__(self): self.root = None def insert(self, value): Insert a value into the BST. Extend the tree to the right for duplicate values. if self.root is None: self.root = TreeNode(value) else: self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value < node.value: if node.left is None: node.left = TreeNode(value) else: self._insert_recursive(node.left, value) else: if node.right is None: node.right = TreeNode(value) else: self._insert_recursive(node.right, value) def depth(self): Calculate the depth of the BST. return self._depth_recursive(self.root) def _depth_recursive(self, node): if node is None: return 0 else: return max(self._depth_recursive(node.left), self._depth_recursive(node.right)) + 1 def search(self, value): Search for a value in the BST and return the number of comparisons made. return self._search_recursive(self.root, value, 0) def _search_recursive(self, node, value, comparisons): if node is None: return comparisons comparisons += 1 if node.value == value: return comparisons elif value < node.value: return self._search_recursive(node.left, value, comparisons) else: return self._search_recursive(node.right, value, comparisons) # Example Usage: # bst = BinarySearchTree() # bst.insert(5) # bst.insert(3) # bst.insert(7) # bst.insert(3) # Insert duplicate # print(bst.depth()) # Should output the depth of the tree # print(bst.search(7)) # Should output the number of comparisons to find 7 ```
answer:class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None class BinarySearchTree: def __init__(self): self.root = None def insert(self, value): Insert a value into the BST. Extend the tree to the right for duplicate values. if self.root is None: self.root = TreeNode(value) else: self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value < node.value: if node.left is None: node.left = TreeNode(value) else: self._insert_recursive(node.left, value) else: if node.right is None: node.right = TreeNode(value) else: self._insert_recursive(node.right, value) def depth(self): Calculate the depth of the BST. return self._depth_recursive(self.root) def _depth_recursive(self, node): if node is None: return 0 else: left_depth = self._depth_recursive(node.left) right_depth = self._depth_recursive(node.right) return max(left_depth, right_depth) + 1 def search(self, value): Search for a value in the BST and return the number of comparisons made. return self._search_recursive(self.root, value, 0) def _search_recursive(self, node, value, comparisons): if node is None: return comparisons comparisons += 1 if node.value == value: return comparisons elif value < node.value: return self._search_recursive(node.left, value, comparisons) else: return self._search_recursive(node.right, value, comparisons) # Example Usage: # bst = BinarySearchTree() # bst.insert(5) # bst.insert(3) # bst.insert(7) # bst.insert(3) # Insert duplicate # print(bst.depth()) # Should output the depth of the tree # print(bst.search(7)) # Should output the number of comparisons to find 7
question:Design and implement a Python class called `InventoryManager` for managing the inventory of a retail store. This class should handle operations such as adding new products, updating the quantity of existing products, and removing products from the inventory. Each product should have attributes like `product_id`, `name`, `category`, `price`, and `quantity`. Additionally, include methods to: - Retrieve the total value of the inventory (sum of the value of all products, where value is calculated as price times quantity). - Find the product with the highest inventory value. - Generate a summary report grouped by product category, including the total number of products and total value for each category. You should use object-oriented principles to ensure the class is maintainable and extendable for future modifications. The code should be properly documented and include error handling for scenarios such as trying to update or remove a non-existent product. Testing the functionality for various scenarios is required. Do not use any third-party APIs, libraries, or frameworks other than the standard Python libraries.
answer:class Product: def __init__(self, product_id, name, category, price, quantity): self.product_id = product_id self.name = name self.category = category self.price = price self.quantity = quantity def value(self): return self.price * self.quantity class InventoryManager: def __init__(self): self.products = {} def add_product(self, product): if product.product_id in self.products: raise ValueError("Product with this ID already exists.") self.products[product.product_id] = product def update_quantity(self, product_id, quantity): if product_id not in self.products: raise ValueError("Product not found.") self.products[product_id].quantity = quantity def remove_product(self, product_id): if product_id not in self.products: raise ValueError("Product not found.") del self.products[product_id] def total_value(self): return sum(product.value() for product in self.products.values()) def highest_value_product(self): if not self.products: return None return max(self.products.values(), key=lambda product: product.value()) def summary_by_category(self): summary = {} for product in self.products.values(): if product.category not in summary: summary[product.category] = {'total_products': 0, 'total_value': 0} summary[product.category]['total_products'] += 1 summary[product.category]['total_value'] += product.value() return summary
question:Write a function that takes a string as an input and returns the length of the longest substring without repeating characters. Your solution should be efficient and handle edge cases where the string length is very large. Additionally, you should consider the use of appropriate data structures to optimize the performance of your solution. Function Signature: `def length_of_longest_substring(s: str) -> int` # Example Input: `"abrkaabcdefghijjxxx"` Output: `10` (The longest substring without repeating characters is "abcdefghij")
answer:def length_of_longest_substring(s: str) -> int: Returns the length of the longest substring without repeating characters. char_index_map = {} max_length = 0 start = 0 for index, char in enumerate(s): if char in char_index_map and char_index_map[char] >= start: start = char_index_map[char] + 1 char_index_map[char] = index max_length = max(max_length, index - start + 1) return max_length