Appearance
question:def can_alice_win(s: str) -> str: Determines if Alice can always make the string a palindrome, regardless of how Bob plays. >>> can_alice_win("level") "Alice wins" >>> can_alice_win("abxba") "Alice wins" >>> can_alice_win("abcde") "Bob wins"
answer:def can_alice_win(s): Determines if Alice can always make the string a palindrome, regardless of how Bob plays. # Counting the number of position mismatches mismatches = sum(1 for i in range(len(s) // 2) if s[i] != s[-(i + 1)]) # If there are no mismatches, the string is already a palindrome if mismatches == 0: return "Alice wins" # Alice wins if the number of mismatches is less than or equal to her first turn return "Alice wins" if mismatches <= 1 else "Bob wins"
question:from typing import List def findLongestWord(s: str, d: List[str]) -> str: Given a dictionary of words, find the longest word in the dictionary that can be formed by deleting some characters of a given string. If there are more than one possible results, return the longest word with the smallest lexicographical order. If there is no possible result, return an empty string. >>> findLongestWord("abpcplea", ["ale", "apple", "monkey", "plea"]) "apple" >>> findLongestWord("abpcplea", ["a", "b", "c"]) "a"
answer:from typing import List def findLongestWord(s: str, d: List[str]) -> str: def can_form(word): it = iter(s) return all(char in it for char in word) longest_word = "" for word in d: if can_form(word): if len(word) > len(longest_word) or (len(word) == len(longest_word) and word < longest_word): longest_word = word return longest_word
question:def longest_equal_substring(binary_string: str) -> int: Returns the length of the longest substring with an equal number of 0's and 1's. :param binary_string: str: A binary string consisting of '0's and '1's. :return: int: Length of the longest substring with equal number of 0's and 1's. >>> longest_equal_substring("110101") 4 >>> longest_equal_substring("000111") 6 >>> longest_equal_substring("01010101") 8 >>> longest_equal_substring("1111") 0
answer:def longest_equal_substring(binary_string): Returns the length of the longest substring with an equal number of 0's and 1's. :param binary_string: str: A binary string consisting of '0's and '1's. :return: int: Length of the longest substring with equal number of 0's and 1's. n = len(binary_string) max_len = 0 # Dictionary to store the first occurrence of each count difference count_diff_index = {} count_0 = count_1 = 0 # Difference (count_1 - count_0) count_diff = 0 for i in range(n): if binary_string[i] == '0': count_0 += 1 else: count_1 += 1 count_diff = count_1 - count_0 if count_diff == 0: max_len = i + 1 elif count_diff in count_diff_index: max_len = max(max_len, i - count_diff_index[count_diff]) else: count_diff_index[count_diff] = i return max_len
question:def canPartition(arr: List[int]) -> str: Given an integer array `arr` of size `N`, determine whether the array can be split into two subarrays such that the sum of the elements in the first subarray is equal to the sum of the elements in the second subarray. If it is possible, return 'Yes', otherwise return 'No'. >>> canPartition([1, 5, 11, 5]) 'Yes' >>> canPartition([1, 2, 3, 5]) 'No' # Implement the function here def test_canPartition(): assert canPartition([1, 5, 11, 5]) == 'Yes' assert canPartition([1, 2, 3, 5]) == 'No' assert canPartition([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) == 'Yes' assert canPartition([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) == 'No' assert canPartition([1, 2, 5]) == 'No' assert canPartition([3, 3, 3, 4, 5]) == 'Yes' assert canPartition([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) == 'No' assert canPartition([1, 2, 3, 4, 5, 6, 7, 8, 9, 11]) == 'Yes' # Edge cases: assert canPartition([100]) == 'No' assert canPartition([50, 50]) == 'Yes'
answer:def canPartition(arr): total_sum = sum(arr) # If total sum is odd, it's not possible to divide it into two equal sum parts if total_sum % 2 != 0: return 'No' target = total_sum // 2 n = len(arr) # Create a 2D DP array dp = [[False] * (target + 1) for _ in range(n + 1)] # Initialize the first column to True, because a sum of 0 can be achieved with an empty subset for i in range(n + 1): dp[i][0] = True # Fill the DP array for i in range(1, n + 1): for j in range(1, target + 1): if arr[i-1] > j: dp[i][j] = dp[i-1][j] else: dp[i][j] = dp[i-1][j] or dp[i-1][j - arr[i-1]] return 'Yes' if dp[n][target] else 'No'