Skip to content
🤔prompts chat🧠
🔍
question:def evaluate_expression(expression: str) -> int: Evaluate the string expression consisting of digits (0-9), operators (+, -, *, /) and parentheses. Returns the evaluated result as an integer. >>> evaluate_expression("3+5*2") 13 >>> evaluate_expression("(2+3)*(5-1)") 20 >>> evaluate_expression("10/(2+3)") 2 import re def test_evaluate_expression_simple(): assert evaluate_expression("3+5") == 8 def test_evaluate_expression_order(): assert evaluate_expression("3+5*2") == 13 def test_evaluate_expression_parenthesis(): assert evaluate_expression("(2+3)*(5-1)") == 20 def test_evaluate_expression_division(): assert evaluate_expression("10/(2+3)") == 2 def test_evaluate_expression_complex(): assert evaluate_expression("3 + 4 * 2 / ( 1 - 5 )") == 1 def test_evaluate_expression_multiple_parentheses(): assert evaluate_expression("((10 + 2) * 3 - 2) / 8") == 4 def test_evaluate_expression_whitespace(): assert evaluate_expression(" 10 + 2 ") == 12

answer:def evaluate_expression(expression): Evaluate the string expression consisting of digits (0-9), operators (+, -, *, /) and parentheses. Returns the evaluated result as an integer. def precedence(op): if op in ('+', '-'): return 1 if op in ('*', '/'): return 2 return 0 def apply_op(a, b, op): if op == '+': return a + b if op == '-': return a - b if op == '*': return a * b if op == '/': return int(a / b) # Use int() to truncate towards zero return 0 def evaluate(tokens): values = [] ops = [] i = 0 while i < len(tokens): if tokens[i] == ' ': i += 1 continue elif tokens[i] == '(': ops.append(tokens[i]) elif tokens[i].isdigit(): val = 0 while i < len(tokens) and tokens[i].isdigit(): val = (val * 10) + int(tokens[i]) i += 1 values.append(val) i -= 1 elif tokens[i] == ')': while len(ops) != 0 and ops[-1] != '(': val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(apply_op(val1, val2, op)) ops.pop() else: while (len(ops) != 0 and precedence(ops[-1]) >= precedence(tokens[i])): val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(apply_op(val1, val2, op)) ops.append(tokens[i]) i += 1 while len(ops) != 0: val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(apply_op(val1, val2, op)) return values[-1] return evaluate(expression) def evaluate_expressions(expressions): results = [] for expression in expressions: results.append(evaluate_expression(expression)) return results def main(): import sys input = sys.stdin.read data = input().splitlines() T = int(data[0]) expressions = data[1:T+1] results = evaluate_expressions(expressions) for result in results: print(result)

question:def is_palindrome(s: str) -> bool: Checks if the given string s is a palindrome considering only letters and ignoring case, spaces, and special characters. >>> is_palindrome("A man, a plan, a canal, Panama!") True >>> is_palindrome("No 'x' in Nixon") True >>> is_palindrome("123Abc-!cbA321") True >>> is_palindrome("This is not a palindr0me") False >>> is_palindrome("") True >>> is_palindrome("A") True pass def check_palindromes(test_cases: List[str]) -> List[str]: Processes multiple test cases to check if each of them is a palindrome, returning a list of "palindrome" or "not a palindrome" for each test case. >>> check_palindromes([ ... "A man, a plan, a canal, Panama!", ... "No 'x' in Nixon", ... "This is not a palindrome", ... "123Abc-!cbA321", ... "Aba" ... ]) ['palindrome', 'palindrome', 'not a palindrome', 'palindrome', 'palindrome'] pass

answer:def is_palindrome(s): Checks if the given string s is a palindrome considering only letters and ignoring case, spaces, and special characters. # Filter out non-letter characters and convert to lower case filtered_chars = [char.lower() for char in s if char.isalpha()] # Check if the filtered characters form a palindrome return filtered_chars == filtered_chars[::-1] def check_palindromes(test_cases): Processes multiple test cases to check if each of them is a palindrome. results = [] for s in test_cases: if is_palindrome(s): results.append("palindrome") else: results.append("not a palindrome") return results

question:def dispense_cash(amount: int) -> str: Given an amount, this function calculates the number of each denomination (100s, 50s, 20s, 10s, 5s, 1s) needed to dispense the amount while minimizing the number of bills. >>> dispense_cash(376) == "100s: 3, 50s: 1, 20s: 1, 10s: 0, 5s: 1, 1s: 1" >>> dispense_cash(123) == "100s: 1, 50s: 0, 20s: 1, 10s: 0, 5s: 0, 1s: 3" >>> dispense_cash(6879) == "100s: 68, 50s: 1, 20s: 1, 10s: 0, 5s: 1, 1s: 4" pass def process_transactions(input_lines: List[str]) -> List[str]: Processes multiple lines of transaction inputs until encountering '0'. For each transaction, it returns the number of each denomination of bill to be dispensed. >>> input_lines = ["376", "123", "6879", "0"] >>> process_transactions(input_lines) ["100s: 3, 50s: 1, 20s: 1, 10s: 0, 5s: 1, 1s: 1", "100s: 1, 50s: 0, 20s: 1, 10s: 0, 5s: 0, 1s: 3", "100s: 68, 50s: 1, 20s: 1, 10s: 0, 5s: 1, 1s: 4"] pass

answer:def dispense_cash(amount): Given an amount, this function calculates the number of each denomination (100s, 50s, 20s, 10s, 5s, 1s) needed to dispense the amount while minimizing the number of bills. denominations = [100, 50, 20, 10, 5, 1] bills = {} for denom in denominations: bills[denom], amount = divmod(amount, denom) return f"100s: {bills[100]}, 50s: {bills[50]}, 20s: {bills[20]}, 10s: {bills[10]}, 5s: {bills[5]}, 1s: {bills[1]}" def process_transactions(input_lines): Processes multiple lines of transaction inputs until encountering '0'. For each transaction, it returns the number of each denomination of bill to be dispensed. results = [] for line in input_lines: amount = int(line) if amount == 0: break result = dispense_cash(amount) results.append(result) return results

question:import math from typing import List, Tuple def min_sum_after_gcd_operations(t: int, test_cases: List[Tuple[int, List[int]]]) -> List[int]: You are given an array a_1, a_2, ..., a_n which consists of n integers. An operation involves selecting any two distinct indices i and j (with i ≠ j) and replacing a_i with the GCD (Greatest Common Divisor) of a_i and a_j. Your task is to determine the minimum possible sum of the array's elements after performing any number of such operations (including zero). Parameters: t (int): The number of test cases. test_cases (List[Tuple[int, List[int]]]): A list of test cases. Each test case contains a tuple with the number of elements in the array n and the array a. Returns: List[int]: List of integers representing the minimum possible sum for each test case. Examples: >>> min_sum_after_gcd_operations(3, [(3, [12, 15, 18]), (4, [24, 36, 48, 60]), (2, [7, 11])]) [9, 48, 7] >>> min_sum_after_gcd_operations(1, [(5, [20, 20, 20, 20, 20])]) [100]

answer:import math def min_sum_after_gcd_operations(t, test_cases): results = [] for case in test_cases: n, arr = case gcd_all = arr[0] for num in arr[1:]: gcd_all = math.gcd(gcd_all, num) results.append(gcd_all * n) return results

Released under the chat License.

has loaded