Skip to content
🤔prompts chat🧠
🔍
question:def min_traversal_cost(grid: List[List[int]]) -> int: Given a square grid of size n x n where each cell contains a positive integer representing the cost to traverse through that cell, return the minimum cost to traverse from the top-left corner to the bottom-right corner, moving only right or down. >>> min_traversal_cost([ ... [1, 2, 3], ... [4, 5, 6], ... [7, 8, 9] ... ]) 21 >>> min_traversal_cost([ ... [5] ... ]) 5 >>> min_traversal_cost([ ... [1, 2], ... [3, 4] ... ]) 7 >>> min_traversal_cost([ ... [1, 1, 1], ... [1, 1, 1], ... [1, 1, 1] ... ]) 5 >>> min_traversal_cost([ ... [1, 3, 1], ... [1, 5, 1], ... [4, 2, 1] ... ]) 7

answer:def min_traversal_cost(grid): Given a square grid of size n x n where each cell contains a positive integer representing the cost to traverse through that cell, return the minimum cost to traverse from the top-left corner to the bottom-right corner, moving only right or down. n = len(grid) if n == 0: return 0 # Create a 2D list to store the cost of reaching each cell cost = [[0] * n for _ in range(n)] # Initialize the cost of the top-left cell cost[0][0] = grid[0][0] # Initialize the first row for j in range(1, n): cost[0][j] = cost[0][j - 1] + grid[0][j] # Initialize the first column for i in range(1, n): cost[i][0] = cost[i - 1][0] + grid[i][0] # Fill in the rest of the cost grid for i in range(1, n): for j in range(1, n): cost[i][j] = min(cost[i - 1][j], cost[i][j - 1]) + grid[i][j] # Return the cost of the bottom-right cell return cost[n - 1][n - 1]

question:def longestPalindrome(s: str) -> str: Return the longest palindromic substring in s. A palindrome is a string that reads the same backward as forward. Args: s (str): A string consisting of lower-case and/or upper-case English letters. Returns: str: The longest palindromic substring of the input string. Examples: >>> longestPalindrome("a") "a" >>> longestPalindrome("aa") "aa" >>> longestPalindrome("abc") "a" # or 'b' or 'c' >>> longestPalindrome("babad") "bab" # or "aba" >>> longestPalindrome("cbbd") "bb" >>> longestPalindrome("racecar") "racecar" >>> longestPalindrome("abbd") "bb" >>> longestPalindrome("AbaB") "A" # or 'B' or 'a' or 'b' or "aba" >>> longestPalindrome("") ""

answer:def longestPalindrome(s): Returns the longest palindromic substring in s. if not s: return "" start, end = 0, 0 def expand_around_center(left, right): while left >= 0 and right < len(s) and s[left] == s[right]: left -= 1 right += 1 return left + 1, right - 1 for i in range(len(s)): l1, r1 = expand_around_center(i, i) # odd length palindrome l2, r2 = expand_around_center(i, i + 1) # even length palindrome if r1 - l1 > end - start: start, end = l1, r1 if r2 - l2 > end - start: start, end = l2, r2 return s[start:end + 1]

question:import re def is_strong_password(password: str) -> bool: Returns True if the given password is strong, otherwise False. A password is considered strong if: 1. It has at least 8 characters. 2. It contains at least one lowercase letter. 3. It contains at least one uppercase letter. 4. It contains at least one digit. 5. It contains at least one special character (!@#%^&*()-+). >>> is_strong_password("Abcdef1@") == True >>> is_strong_password("StrongPass123!") == True >>> is_strong_password("Ab1@") == False >>> is_strong_password("ABCDEFG1@") == False >>> is_strong_password("abcdefg1@") == False >>> is_strong_password("Abcdefg@") == False >>> is_strong_password("Abcdefg1") == False >>> is_strong_password("") == False >>> is_strong_password("!@#%^&*()-+") == False

answer:import re def is_strong_password(password): Returns True if the given password is strong, otherwise False. A password is considered strong if: 1. It has at least 8 characters. 2. It contains at least one lowercase letter. 3. It contains at least one uppercase letter. 4. It contains at least one digit. 5. It contains at least one special character (!@#%^&*()-+). if len(password) < 8: return False if not re.search(r'[a-z]', password): return False if not re.search(r'[A-Z]', password): return False if not re.search(r'd', password): return False if not re.search(r'[!@#%^&*()-+]', password): return False return True

question:def count_missing_numbers(nums): Given a list of integers nums containing n unique elements, where each element is in the range [1, n], return the number of positive integers that are missing from the list. >>> count_missing_numbers([]) 0 >>> count_missing_numbers([1, 2, 3, 4, 5]) 0 >>> count_missing_numbers([6, 7, 8, 9, 10]) 5 >>> count_missing_numbers([2, 3, 7, 8, 9]) 3 >>> count_missing_numbers([1, 2, 4, 5]) 1 >>> count_missing_numbers([4, 2, 5, 1, 3]) 0 >>> count_missing_numbers(list(range(1, 100001))) 0

answer:def count_missing_numbers(nums): Returns the number of positive integers that are missing from the list. n = len(nums) present = [False] * n for num in nums: if 1 <= num <= n: present[num - 1] = True missing_count = 0 for present_flag in present: if not present_flag: missing_count += 1 return missing_count

Released under the chat License.

has loaded